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In 1989, Sir Sam Edwards made the visionary proposition to treat jammed granular materials using
a volume ensemble of equiprobable jammed states in analogy to thermal equilibrium statistical
mechanics, despite their inherent athermal features. Since then, the statistical mechanics approach
for jammed matter—one of the very few generalizations of Gibbs-Boltzmann statistical mechanics to
out-of-equilibrium matter—has garnered an extraordinary amount of attention by both theorists and
experimentalists. Its importance stems from the fact that jammed states of matter are ubiquitous in
nature appearing in a broad range of granular and soft materials such as colloids, emulsions, glasses,
and biomatter. Indeed, despite being one of the simplest states of matter—primarily governed by the
steric interactions between the constitutive particles—a theoretical understanding based on first
principles has proved exceedingly challenging. Here a systematic approach to jammed matter based
on the Edwards statistical mechanical ensemble is reviewed. The construction of microcanonical and
canonical ensembles based on the volume function, which replaces the Hamiltonian in jammed
systems, is discussed. The importance of approximation schemes at various levels is emphasized
leading to quantitative predictions for ensemble averaged quantities such as packing fractions and
contact force distributions. An overview of the phenomenology of jammed states and experiments,
simulations, and theoretical models scrutinizing the strong assumptions underlying Edwards
approach is given including recent results suggesting the validity of Edwards ergodic hypothesis
for jammed states. A theoretical framework for packings whose constitutive particles range from
spherical to nonspherical shapes such as dimers, polymers, ellipsoids, spherocylinders or tetrahedra,
hard and soft, frictional, frictionless and adhesive, monodisperse, and polydisperse particles in any
dimensions is discussed providing insight into a unifying phase diagram for all jammed matter.
Furthermore, the connection between the Edwards ensemble of metastable jammed states and
metastability in spin glasses is established. This highlights the fact that the packing problem can be
understood as a constraint satisfaction problem for excluded volume and force and torque balance
leading to a unifying framework between the Edwards ensemble of equiprobable jammed states and
out-of-equilibrium spin glasses.
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I. INTRODUCTION

Materials composed of macroscopic grains such as sand,
sugar, and ball bearings are ubiquitous in our everyday
experience. Nevertheless, a fundamental description of both
static and dynamic properties of granular matter has proven
exceedingly challenging. Take, for example, the pouring of
sand into a sandpile; see Fig. 1(a). This process can be
considered as a simple example of a fluid-to-solid phase
transition of a multiparticle system. However, it is not clear
whether this transition is governed by a variational principle of
an associated thermodynamic quantity such as the free energy
in equilibrium systems. Granular materials do not explore
different configurations in the absence of external driving
because thermal fluctuations induce negligible particle motion
at room temperature and intergrain dissipation and friction
quickly drain the kinetic energy from the system. On the other
hand, the jammed state of granular matter bears a remarkable
resemblance with an amorphous solid: both are able to sustain

a nonzero shear stress; the phase transition from liquid to solid
states and the analogous jamming transition in grains are both
governed by one or a few macroscopic control parameters;
and, when using certain packing-generation protocols, macro-
scopic observables, such as the packing fraction, are largely
reproducible.
Jamming transitions not only occur in granular media, but

also in soft materials such as colloidal suspensions which
may asymptotically reach jamming under centrifugation,
compressed emulsions, foams, glasses, and spin glasses below
their glass transition temperature and biological materials
such as cells, DNA, and protein packing. Even more broadly,
the jamming transition pertains to a larger family of computa-
tional problems named constraint satisfaction problems
(CSPs) (Krzakala and Kurchan, 2007). These problems
involve finding the values of a set of variables simultaneously
satisfying all the constraints imposed on those variables and
maximizing (or minimizing) an objective function. For exam-
ple, in the problem of sphere packings, the goal is to minimize
the volume occupied by the packing subject to the geometrical
constraint of nonoverlapping particles and the mechanical
constraints of force and torque balance at mechanical equi-
librium. In general, packing problems play a central role in
various fields of science in addition to physics, such as
discrete mathematics, number theory, and information theory.
An example of practical interest is the problem of efficient
data transmission through error-correcting codes, which is
deeply related to the optimal packing of (Hamming) spheres
in a high-dimensional space (Conway and Sloane, 1999). The
common feature of all packing problems is the existence of a
phase transition, the jamming transition, separating the phase
where the constraints are satisfiable from a phase where they
are unsatisfiable.
The existence of constraints in physical systems causes, in

general, a significant metastability. Metastability is the phe-
nomenon by which the system remains confined for a relatively
long time in suboptimal regions of the phase space. It is related
to the rough energy (or free energy) landscape characterized by
the presence of many nontrivially related minima as a function
of the microscopic configurations (or the macroscopic states).
Metastability is, indeed, the leitmotiv in most complex physical
systems, whatever its origin. For example, in granular materials
metastability arises from geometrical and mechanical con-
straints, but it is found also in spin glasses, which are magnetic
systems with competing ferromagnetic and antiferromagnetic
exchange interactions. In spin glasses, the emergence of
metastability is due to frustration, which is the inability of
the system to simultaneously satisfy all local ordering require-
ments. Notwithstanding their differences, these two physical
systems, jammed grains and spin glasses, exhibit a remarkably
similar organization of their metastable states, a fact that
stimulates our search for further analogies within these systems
and common explanations. It is, indeed, this analog approach,
as best exemplified by the encompassing vision of Sir Sam
Edwards (Goldbart, Goldenfeld, and Sherrington, 2005), that
may shed new light on the solution to jamming problems
otherwise doomed to remain obscure.
Because of their substantial metastability, these systems

are fundamentally out of equilibrium even in a macroscop-
ically quiescent state. Nevertheless, the commonalities with
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equilibrium many-body systems suggest that ideas from
equilibrium statistical mechanics might be useful. In this
review, we consider theories for jammed matter based on
generalizations of equilibrium ensembles. These statistical
mechanics-based approaches were pioneered by Sir Sam F.
Edwards in the late 1980s; see Fig. 1(b).
Investigations of the structural properties of jammed pack-

ings are much older. In fact, the related problem of identifying
the densest packing of objects has an illustrious history in the
mathematical literature (Kepler, 1611; Weaire and Aste,
2008). Exact mathematical proofs of the densest packings
are extremely challenging even for spherical particles. The
Kepler conjecture of 1611 stating that the densest arrangement
of spheres in three spatial dimensions (3D) is a face-centered-
cubic (fcc) crystal with a packing volume fraction ϕfcc ¼
π=ð3 ffiffiffi

2
p Þ ≈ 0.740 48… remained an unsolved mathematical

problem for almost four centuries (Kepler, 1611; Hales, 2005).
Systematic experiments on disordered hard-sphere packings
began in the 1960s with the work of Bernal (Bernal and
Mason, 1960; Bernal, 1964). These experiments are concep-
tually simple, yet give fundamental insight into the structure
of dense liquids, glasses, and jammed systems. Equally sized
spherical particles were placed into a container and compac-
tified by shaking or tapping the system until no further volume
reduction was detected. These experiments typically yielded
configurations with packing fraction ϕrcp ≈ 0.64, which is
historically referred to as random close packing (rcp).
In order to apply a statistical mechanical framework to

these jammed systems, it is first necessary to identify the
variables characterizing the state of the system macroscopi-
cally. Clearly, the system energy is not suitable, since it may
either not be conserved (for frictional dissipative particles) or

not be relevant (for frictionless hard particles). On the other
hand, an obvious state variable is the system volume. In fact,
unlike in equilibrium systems, the volume in jammed systems
is not an externally imposed fixed variable, but rather depends
on the microscopic configuration of the grains. Edwards first
extraordinary insight was to parametrize the ensemble of
jammed states by the volume function Wðfri; t̂igÞ, as a
function of the N particles positions frig and orientations
ft̂ig, as a replacement for the Hamiltonian in the equilibrium
ensembles (Edwards and Oakeshott, 1989; Mehta and
Edwards, 1990; Edwards, 1991, 1994).
A second crucial point in the development of the Edwards

granular statistical mechanics is a proper definition of the
jammed state. It is important to note that only jammed
configurations fri; t̂ig are included in the ensemble. A
definition of what we mean by jammed state is not a trivial
task and will be treated rigorously in the next section.
Assuming that an unambiguous definition of metastable
jammed state can be expressed analytically, then a statistical
mechanics approach to granular matter proceeds by analogy
with equilibrium systems. In this case, the volume function
allows for the definition of a granular entropy leading to both
microcanonical and canonical formulations of the volume
ensembles. This implies, in particular, the existence of an
intensive parameter conjugate to the volume. This temper-
aturelike parameter was called compactivity by Edwards.
The full Edwards ensemble is characterized by the macro-

scopic volume and, further, by the stress of the packing. Since
analytical treatments of the full ensemble are challenging, one
typically considers suitable approximations. Neglecting cor-
relations between the volume and the stress leads to a volume
ensemble under the condition of isostaticity (Song, Wang, and

FIG. 1. (a) Pouring grains into a sandpile is the simplest example of a jamming transition from a flowing state to a mechanically stable
jammed state. However, this simplicity can be deceiving. In this review we show that building sandpiles is at the core of one of the most
profound problems in disordered media. From the glass transition to novel phases in anisotropic colloidal systems, pouring grains in a
pile is the emblematic system to master with tremendous implications on all sort of soft materials from glasses, colloids, foams, and
emulsions to biomatter. Edwards endeavor to tame granular matter is condensed in the attempt of measuring the “temperature” of the
sandpile. (b) Sir Sam F. Edwards (1 February 1928—7 July 2015) (Warner, 2017). S. F. Edwards first introduced the intriguing idea that
a far-from-equilibrium, jammed granular matter could be described using methods from equilibrium statistical mechanics. In the
Edwards ensemble, macroscopic quantities are computed as flat averages over force- and torque-balanced configurations, which leads to
a natural definition of a configurational “granular” temperature known as the compactivity.
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Makse, 2008). The core of this review is devoted to elaborate
on a mean-field formulation of the Edwards volume ensemble
that can potentially lead to a unifying phase diagram encom-
passing all jammed matter ranging from systems made of
spherical to nonspherical particles, with friction or adhesion to
frictionless particles, monodisperse and polydisperse systems
and in any dimension. Likewise, we describe frameworks for
stress and force statistics alone, such as the stress ensemble
(Henkes, O’Hern, and Chakraborty, 2007; Chakraborty,
2010), force network ensemble (Bouchaud, 2002; Snoeijer
et al., 2004; Tighe et al., 2010), and belief propagation for
force transmission (Bo et al., 2014).
Edwards statistical mechanical ensemble relies on two

assumptions: (i) ergodicity and (ii) equiprobability of micro-
states. These assumptions have been scrutinized in the liter-
ature, and the questions raised in this context will be reviewed
here. Despite these critiques, the Edwards approach was used to
describe a wide range of jammed and glassy materials. Early
works adopted the concept of inherent structures from glasses
(Coniglio and Herrmann, 1996; Coniglio and Nicodemi, 2000,
2001; Coniglio, Fierro, and Nicodemi, 2002; Fierro, Nicodemi,
and Coniglio, 2002b) and effective temperatures (Kurchan,
2000, 2001; Makse and Kurchan, 2002; Ono et al., 2002;
O’Hern, Liu, and Nagel, 2004; Ciamarra, Coniglio, and
Nicodemi, 2006; Cugliandolo, 2011) with applications to
plasticity (Lieou and Langer, 2012). More recent approaches
are based on replica theory for hard-sphere glasses (Parisi and
Zamponi, 2010; Charbonneau et al., 2017). Valuable insight is
gained from models that exhibit both jamming and glass
transitions (Krzakala and Kurchan, 2007; Mari, Krzakala,
and Kurchan, 2009; Ikeda, Berthier, and Sollich, 2012). In
this review, we emphasize that the Edwards ensemble can be
recast as a constraint satisfaction problem, which allows for a
unifying view of hard-sphere glasses and spin glasses through
a synthesis applied at the foundation of granular statistical
mechanics.
This review is organized as follows. In Sec. II we discuss

the foundations of the ensemble approach via the rigorous
definition of metastable jammed states and the construction of
microcanonical and canonical ensembles based on the volume
function and stress-moment tensor, which play the role of
the Hamiltonian in jammed systems. In Sec. III we collect
empirical results on the phenomenology of jammed states.
Moreover, we review results from experiments, simulations,
and theoretical models that test the ergodic and uniform
measure underlying the ensemble approach. In Sec. IV we
consider volume ensembles and their mean-field description,
which provides quantitative predictions for ensemble aver-
aged quantities such as the packing fraction of spherical and
nonspherical particles. In Sec. V we discuss a unification
between the Edwards ensemble of jammed matter and theories
based on ideas from glass and spin-glass theories under the
CSP paradigm. In Sec. VI we finally close with a summary
and a collection of open questions for future work.
In recent years a number of reviews have appeared dealing

with more specific aspects of granular matter: Richard et al.
(2005) (granular compaction), Makse, Brujić, and Edwards
(2005) (jammed emulsions), Chakraborty (2010) and Bi et al.
(2015) (stress ensembles), Tighe et al. (2010) (force network
ensemble), and Cugliandolo (2011) and Qiong and Mei-Ying

(2014) (effective temperatures). The present review is also
complementary to other reviews on jammed granular matter,
which do not specifically discuss the Edwards thermodynam-
ics: Jaeger, Nagel, and Behringer (1996), Alexander (1998),
Kadanoff (1999), Liu and Nagel (2010), Parisi and Zamponi
(2010), Torquato and Stillinger (2010), van Hecke (2010),
Borzsonyi and Stannarius (2013), and Charbonneau et al.
(2017). Our work puts these topics into the general context of
Edwards statistical mechanics and provides an overview of the
immense amount of literature related to Edwards ensemble
approaches.

II. STATISTICAL MECHANICS FOR JAMMED
GRANULAR MATTER

In a jammed system all particle motion is prevented due to
the confinement by the neighboring particles. The transition to
a jammed state is thus not controlled by the temperature as
conventional phase transitions in systems at thermal equilib-
rium, but by geometrical and mechanical constraints imposed
by all particles in the system. Therefore, jammed states can be
regarded as the set of solutions in the general class of CSPs,
which we term the jamming satisfaction problem (JSP), where
the constraints are fixed by the mechanical stability of the
blocked configurations of grains. From this standpoint, the
jamming problem has a wider scope than the pure physical
significance, encompassing the broader class of CSPs: the
unique feature of the packing problem in the large universe of
CSPs is that this system allows for a direct and relatively
simple experimental test of theoretical predictions.

A. Definition of jammed states

We consider an assembly of N, for simplicity, monodis-
perse particles described by the configurations of the particles
fr1; t̂1;…; rN; t̂Ng, where ri denotes the ith particle’s position
(of its center of mass) and t̂i its orientation. The first problem
we address concerns the definition of a blocked configuration
of the particles, i.e., the jammed states. To be jammed the
system has to satisfy both excluded volume and mechanical
constraints. The excluded volume constraint enforces the fact
that particles do not overlap, and its mathematical implemen-
tation depends on the shape of the particles. For a system of
monodisperse hard spheres, this constraint takes on the
following form:

jri − rjj ≥ 2R ðequal-size hard spheresÞ; ð1Þ

which means that the centers of any pair of particles i and j
must be at a distance twice as large as their radius R. The hard-
core constraint in Eq. (1) is valid only for monodisperse
spheres, but it can be generalized to polydisperse and
nonspherical particles.
The excluded volume constraint is necessary but not

sufficient by itself to determine whether a configuration of
particles is jammed. Indeed, it has to be supplemented by a
constraint enforcing the mechanical stability of the system,
requiring that particles satisfy the force and torque balance
conditions. We denote by di

a the vector connecting ri and the
ath contact on the ith particle. At this contact there is a
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corresponding force vector fia on particle i arising from the
contacting particle. With this notation we can formulate the
conditions of force and torque balances for a particle of
general shape:

X
a∈∂i

fia ¼ 0; i ¼ 1;…; N; ð2Þ

X
a∈∂i

di
a × fia ¼ 0; i ¼ 1;…; N; ð3Þ

where the notation ∂i denotes the set of contacts of particle i.
Equations (2) and (3) apply to both frictional and frictionless
particles. In the latter case there is only one single force
component in the normal direction

fia ¼ −fian̂i
a ðfrictionlessÞ; ð4Þ

where n̂i
a denotes the normal unit vector at the contact point,

which depends on the particle shape. For frictional particles,
we can decompose fia into a normal component fia;n and a
force vector in the tangent plane fia;τ (see Fig. 2). Coulomb’s
law with friction coefficient μ is then expressed by the
inequality

jfia;τj ≤ μfia;n ðfrictionalÞ: ð5Þ

If the interparticle forces are purely repulsive, as in most of the
cases treated in this review, we also have the condition

di
a · fia < 0: ð6Þ

Finally, Newton’s third law implies that two particles i and j
in contact with a satisfy

fia ¼ −fja: ð7Þ

B. Metastability of jammed states

Having defined the necessary and sufficient conditions for
a granular system to be jammed, we now provide a finer
description of jammed states, based on the concept of
metastability, i.e., their stability with respect to particles
displacements. A characterization similar to the one proposed
here appeared already in Torquato and Stillinger (2001),
where the concept of jamming categories for metastable
packings has been defined. The similarities with the classi-
fication of the jammed states in Torquato and Stillinger (2001)
are discussed in parallel with the classification presented next.
To properly define the metastable jammed states we need

to specify with respect to what type of displacements they
are metastable. More precisely, if we start from an initially
jammed state satisfying Eqs. (1)–(7) and then displace a set of
particles, how do we decide if the initial state is stable under
this move? A helpful discriminant is the volume V or
equivalently the volume fraction of the packing ϕ defined
as the ratio of the volume occupied by the particles to the total
volume of the system and the number of particles involved
in the displacement. Thus, consider an initially jammed state
and assume you can displace only one particle at a time. If the
volume fraction of the packing is not increasing whatever
particle you move, then we may assert that the packing is
stable against any single particle displacement. We call this
type of jammed state a 1-particle-displacement (1-PD) meta-
stable jammed state, which is defined as a configuration
whose volume fraction cannot be increased by the displace-
ment of one single particle; see Fig. 3(a). However, ϕ may be
increased by moving a set of two or more particles at the same
time. The definition of 1-PD metastable jammed states is the
same as the definition of local jamming in Torquato and
Stillinger (2001), stating that in a locally jammed configura-
tion no single particle can be displaced while keeping the
positions of all other particles fixed.

FIG. 2. Parametrization of a jammed configuration involving
five nonspherical grains. The tangential fia;τ and normal force
vectors fia;nn̂ia at contact a on particle i are shown. dia indicates
the vector from the center of particle i to the contact point a
between one of its neighbors. ri gives the location of the center of
particle i. The gray-shaded particle is mechanically stable if all
forces and torques generated at the four contact points cancel [see
Eqs. (2) and (3)].

FIG. 3. (a) Example of a 1-particle-displacement jammed state:
no particle can increase the volume fraction by displacing itself
while keeping the others fixed in their positions. It is assumed that
a membrane is keeping the particles in place or that they are
surrounded and kept in place by a rigid container. (b) The 1-PD
metastable state in (a) is not stable under 2-PD. Simultaneous
displacement of two particles to escape the 1-PD metastable trap,
two contacting particles are displaced while keeping the others
fixed in their positions. (c) Higher-order metastable jammed state:
after the move in (b), a new metastable jammed state is reached
having higher stability than the original one in (a).
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We can now extend this definition to jammed states which
are stable with respect to the simultaneous displacement
of multiple particles. Specifically, we define a k-particle-
displacement (k-PD) metastable jammed state as a configu-
ration whose volume fraction cannot be increased by the
simultaneous displacement of any contacting subset of
1; 2;…; k particles. Again, we find this definition quite similar
to the definition of the collective jamming category in
Torquato and Stillinger (2001), which states that in collec-
tively jammed configurations no subset of particles can be
simultaneously displaced so that its members move out of
contact with one another and with the remaining set.
Following the definitions given above a ground state of the
system is a configuration whose volume fraction cannot be
increased by the simultaneous displacement of any finite
number of particles. A ground state of jamming corresponds
to the k → ∞ limit of a k-PD metastable jammed state, the
∞-PD jammed ground state.
In the following section we introduce the volume function

WðrÞ to parametrize the system volume as a function of
the particles’ positions. It is useful then to classify the k-PD
metastable jammed states in terms of the minima of this
function. More precisely, we identify the k-PD metastable
jammed states as those states that satisfy the geometrical and

mechanical constraints and are local minima of WðrÞ. For
example, 1-PD metastable states are those configurations r�
for whichWðrÞ is convex around r� under 1-particle displace-
ments, but nonconvex under k-particle displacements with
k > 1; see Fig. 4(a). Here convex means that all the eigen-
values of the Hessian of WðrÞ evaluated at the configurations
r� are positive, while nonconvex means that there exists at
least one negative eigenvalue in the spectrum of the Hessian.
Similarly, k-PD metastable states are those configurations r�
for which WðrÞ is convex around r� under any k0-particle
displacements with k0 ≤ k, and nonconvex under any k0-
particle displacements with k0 > k. A simple example of a
1-PD metastable jammed state is shown in Fig. 3(a).
Interestingly, in spin-glass systems the (energetically)

metastable states can be defined in a similar way, not with
respect to volume but to energy. The analog of the 1-PD
metastable jammed state is, for a spin glass, the one-spin-flip
(1-SF) metastable state, defined as a configuration whose
energy cannot be lowered by the flip of any single spin.
Similarly the k-spin-flip (k-SF) metastable state, akin to the k-
PD metastable jammed state, is a configuration whose energy
cannot be lowered by the flip of any cluster of 1; 2;…; k spins.
Moreover, for spin glasses, several rigorous results on
metastable states are known, including their probabilities,

FIG. 4. (a) Unification between Edwards statistical mechanics of jammed matter and the mean-field picture of spin glasses. Main
panel: Edwards entropy SðϕÞ vs the volume fraction ϕ of the metastable states k-PD and ground state ∞-PD in the jamming model as
well as the analogous complexity ΣðϵÞ vs the negative energy density −ϵ in the spin-glass models in terms of the equivalent k-SF
metastable and ∞-SF ground state. The J line corresponds to the ground states between ½ϕth;ϕgcp� and are ∞-PD states with only
positive eigenvalues for the Hessian. This line is obtained by changing α ¼ k=N between [0, 1] and k → ∞ and N → ∞ below the full
replica symmetry breaking transition as indicated. Top right panel: Schematic representation of the metastable states 1-PD and ground
state ∞-PD of jamming in the volume landscape (the analogous 1-SF metastable states and the ∞-SF ground state in the energy
landscape of spin glasses is a function of the spin configuration σ instead of r). Lower panel: Organization of the k-PD metastable states
into a hierarchy of successively nested k-PD cores (k cores). (b) Machine learning classifier applied to the abstracts of 581 papers citing
the original Edwards paper (Edwards and Oakeshott, 1989) to classify the sentiment of the citing authors regarding the validity of the
Edwards ergodic hypothesis. We construct two training sets of papers of the authors indicated in the figure based on the positive
sentiment [showing results in agreement with Edwards and assigned PðnegÞ ¼ 0] and negative sentiment [in disagreement with
Edwards, assigned PðnegÞ ¼ 1]. The training sets are then reclassified as indicated. In the negative training set we do not include the
recent paper of the Frenkel group showing the validity of Edwards ensemble at the jamming transition (Martiniani et al., 2017). We use
the same machine learning methods from Bovet, Morone, and Makse (2016) used to predict presidential elections from Twitter activity;
see also (Bohannon (2017), http://bit.ly/2nSjHuI. While the majority of authors are neutral, the classifier also identifies two polarized
groups, the positive sentiment being the largest one going gradually from neutral to extreme positive. A gap at PðnegÞ ¼ 0.6 separates
this group from the negative one. Recent work (Martiniani et al., 2017) seems to justify this “wisdom of crowds” effect; see Sec. III.B.
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basins of attraction, and how they are sampled by various
dynamics (Newman and Stein, 1999). These results are
explained in detail in Sec. V along with their granular
counterpart. The analogy between grains, hard-sphere glasses,
and spin glasses has been reviewed by Dauchot (2007) and is
described in Table I and Fig. 4(a).
Protocols to generate jammed packings usually lead to a

nonzero fraction of particles (2%–5%), which remain mobile
even though all other particles are ∞-PD jammed. These
particles are called rattlers and can be displaced within a cage
without changing the volume function.
Now that we have a rigorous definition for the jammed

states and their metastable classification, we address the
crucial problem of how to describe their statistical mechanics.
Consider a granular material undergoing vertical tapping.
After tapping, the system relaxes into a jammed state.
Subsequent tapping will allow the system to explore other
jammed states. An important question arises: how does the
tapping dynamics sample the jammed states or what is the
probability measure for jammed states obtained from tapping?

C. Edwards statistical ensemble for granular matter

In 1989 Edwards made the remarkable proposal that the
macroscopic properties of static granular matter can be
calculated as ensemble averages over equiprobable jammed
microstates controlled by the system volume (Edwards and
Oakeshott, 1989). The thermodynamics of powders was
created with this claim (Edwards, 1994):

“We assume that when N grains occupy a volume V
they do so in such a way that all configurations are
equally weighted. We assume this; it is the analog
of the ergodic hypothesis of conventional thermal
physics.”

This idea is suggestive because it turns a complicated
dynamical problem into a relatively simpler equilibrium
problem. Such an equilibrium sampling in a nonequilibrium
system was recently also adopted by several authors in the

glass community to study the ground state of amorphous
packings as the infinite-pressure limit of metastable glassy
states described by equilibrium statistical mechanics (Parisi
and Zamponi, 2010; Charbonneau et al., 2017). Here, in the
so-called Monasson construction (Monasson, 1995), a modi-
fied equilibrium average over metastable states is taken,
supplemented by the additional assumption that such meta-
stable states become jammed states in the infinite-pressure
limit. In such a limit, the states are flatly sampled and the
Monasson construction is exactly the Edwards ensemble.
Even more, it turns out that mean-field glass models relaxing
at zero temperature have exactly Edwards ergodicity property
(Kurchan, 2001): at long times any nonequilibrium observable
is correctly given by the typical value it takes over all local
energy minima of the appropriate energy density. The original
idea put forward by Edwards is basically to take the flat
average at the end, i.e., in the jammed state.
Under the Edwards ergodic hypothesis, granular matter

should be amenable to an equilibrium statistical mechanical
treatment, where the role of energy is played by the volume,
and all the jammed states at a fixed volume are equally
probable. In granular assemblies consisting of dry particles in
a size range above a few microns, the thermal energy at room
temperature can be neglected and neither equilibrium entropy
nor free energy can be used as thermodynamic potentials to
describe the system. Nevertheless, for large enough particle
numbers, statistical ideas seem relevant: macroscopic observ-
ables such as the packing fraction are robustly reproduced for
a given protocol. If operations manipulating individual par-
ticles are neglected, granular assemblies are thus described by
well-defined macrostates that correspond to many different
microscopic configurations. Instead of the energy, one can
equivalently take the volume as the key variable characterizing
the macrostate of a static assembly. S. F. Edwards insight
suggested to consider the volume of a granular assembly
analogous to the energy of an equilibrium system: unlike in
typical equilibrium systems, the volume is not an externally
fixed parameter, but depends on the microscopic configuration
of the particles including positions and orientations. This
suggests to introduce a volume function Wðfri; t̂igÞ giving

TABLE I. Synoptic view of unifying framework to understand the thermodynamics, relevant observables, and classification of metastable
states in granular matter, hard-sphere glasses, and spin glasses. The four categories of jamming are defined according to their metastability: local
metastable (1-PD, SF stable); collective metastable (k-PD, SF stable with finite 1 < k < ∞); globally metastable (∞-PD, SF stable, but with
0 ≤ α < 1, where α ¼ k=N for k; N → ∞); and the true global ground state (∞-PD, SF stable and α ¼ 1).

Granular matter Hard-sphere glasses Spin glasses

Thermodynamic descriptor Volume function WðqÞ Density functional S½ρðrÞ� Hamiltonian HðσÞ
Lagrange multiplier Compactivity X Pressure P Temperature T

Entropy Edwards entropy SðVÞ Configurational entropy Σ Complexity Σ
Metastable states Minima of WðqÞ þ jamming constraint Minima of S½ρðrÞ� Minima of HðσÞ at T ¼ 0

Local metastable 1-particle displacement 1-spin flip (T ¼ 0)

Collective metastable k-particle displacement k-spin Flip (T ¼ 0)

Global metastable ∞-particle Displacement ϕ ∈ ½ϕth;ϕgcpÞ ∞-spin flip (T ¼ 0)

0 ≤ α < 1 0 ≤ α < 1

Ground state ∞-particle displacement ϕgcp ∞-spin flip (T ¼ 0)

α ¼ 1 α ¼ 1
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the system volume as a function of the particles positions
ri and orientations t̂i equivalent to the Hamiltonian
Hðfpi; rigÞ, i ¼ 1;…; N.
With this analogy, all concepts of equilibrium statistical

mechanics can be carried over into the realm of nonthermal
static granular systems opening the door for the use of thermal
concepts for athermal systems, i.e., there is a whole new
statistical mechanics emerging from the point which, in
conventional, thermal, statistical mechanics corresponds to
T ¼ 0, S ¼ 0 (Edwards, 2008). For an in-depth treatment of
equilibrium statistical mechanics we refer to standard text-
books (Landau and Lifshitz, 1980; Huang, 1987; Pathria and
Beale, 2011). In particular, one can introduce the concept of a
granular entropy SðVÞ as a measure of the number of micro-
states ΩðVÞ for a given fixed volume V

SðVÞ ¼ λ logΩðVÞ; ð8Þ

ΩðVÞ ¼
Z

dqδ(V −WðqÞ)Θjam: ð9Þ

Here we use the shorthand notation q ¼ fri; t̂ig andR
dq ¼ Q

N
i¼1

R
dri

H
dt̂i. The parameter λ ensures the correct

dimension of S as volume (set to unity in the following).
The function Θjam in Eq. (9) is crucial. It is there to admit

only microstates in the ensemble that are jammed by enforcing
the excluded volume and mechanical stability constraints in
Eqs. (1)–(7). Only these rigid states lead to a static assembly at
fixed volume. While this function has been treated lightly in
earlier studies of Edwards thermodynamics, it contains most
of the interesting physics of the problem and therefore will
be treated carefully in the remainder of this review. More
precisely, Θjam admits only the solutions of the JSP, which
reads as follows for monodisperse hard spheres:

Θjam ¼
YN
i;j¼1

θðjri − rjj − 2RÞ hard-core ðsphericalÞ

×
YN
i¼1

δ

�X
a∈∂i

fia

�
force balance

×
YN
i¼1

δ

�X
a∈∂i

di
a × fia

�
torque balance

×
YN
i¼1

Y
a∈∂i

θðμfia;n − jfia;τjÞ Coulomb friction

×
YN
i¼1

Y
a∈∂i

θð−di
a · fiaÞ repulsive forces

×
Y

all contacts a

δðfia þ fjaÞ Newton 3rd law: ð10Þ

Implicit in this microcanonical description is again the
underlying assumption of equiprobability: the distribution of
jammed configurations q at a given volume is uniform:

PmicðqÞ ¼ ΩðVÞ−1δ(V −WðqÞ)Θjam: ð11Þ

The definition of Θjam deserves a crucial clarification.
According to the classification of metastable jammed states
given previously, when constructing the volume ensemble we
have to specify what type of metastable jammed states we are
considering at the fixed volume V. The crucial point is that k-
PD jammed states are fundamentally different for different
values of k, and hence there is no reason, in principle, to assign
them the same statistical weight across all the values of k. In
other words, when we fix the volume V, we consider as
equiprobable only the jammed states corresponding to the
same metastable class, i.e., with the same k. This is evident in
the language of jammed categories: a locally jammed state
(¼ 1-PD) is substantially different from a collectively jammed
state (¼ k-PD), and it cannot be claimed a priori that they
are found with equal probability in a tapping experiment,
even if they may have the same density. An identical
situation applies to metastable states in spin glasses and
disordered ferromagnets where the equiprobability of the
metastable states has been rigorously studied (Newman and
Stein, 1999).
This clarification is important and indeed it is at the origin

of many headaches when trying to prove or disprove Edwards
conjecture. In the absence of a first principle derivation of
Edwards statistical mechanics, there has been a long-standing
controversy on it validity, as illustrated in Fig. 4(b). Even if
this condition did not appear in the original formulation by
Edwards, it is nevertheless a quite obvious requirement,
especially in light of analogous exact results in spin glasses
and hard-sphere glasses (Newman and Stein, 1999; Parisi and
Zamponi, 2010). The reason to not make explicit this further
condition was presumably the feeling of Edwards that the
jammed states that only matter in granular media are the
ones corresponding to k ¼ ∞, i.e., the “ground states” [see
Edwards, Brujić, and Makse (2004) for a more detailed
discussion]. Here we extend Edwards idea also to jammed
states with k < ∞. Summing it up, the correct reading of the
assumption about the probability measure over jammed states
must take into account the restriction to the states within the
same k-PD class, a condition that must be included in the
definition of Θjam as an additional constraint. In practice this
can be done after having defined the volume function of
the system, which provides an unambiguous definition of
mechanically metastable states via its convexity, much in the
same way as for spin glasses, the Hamiltonian allows one to
properly define the energetically metastable states, i.e., its
local minima (Newman and Stein, 1999). This topic will be
discussed in detail in Sec. V.
In principle the Edwards conjecture can be correct or not,

and a case-by-case analysis is required to establish its validity.
In granular systems, Liouville’s theorem for the conservation
of phase space volume under time evolution (the cornerstone
of conventional equilibrium statistical mechanics) does not
hold, leading to nonzero phase space compressibility. The
reason is the strongly dissipative nature of granular assem-
blies, which are dominated by static frictional forces, although
an intuitive proof for the use of W in granular thermody-
namics has been sketched by the analogous proof of the
Boltzmann equation (H theorem) (Edwards, Brujić, and
Makse, 2004).
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In this ensemble, statistical averages of observables are
assumed to be equal to time averages over single trajectories,
provided the actual dynamics is ergodic. This can be induced
by external drive, such as infinitesimally small tapping or
very slow shearing. Since the drive induces fluctuations of the
packing configuration, and thus fluctuations of the volume,
one can similarly introduce a canonical picture (without
change in particle number). The analog of temperature is
called compactivity X, whose inverse is the derivative of the
granular entropy

X−1 ¼ ∂SðVÞ
∂V : ð12Þ

For a real granular system, the compactivity can be thought of
as a measure of how more compact the system can possibly
be. Large values of X indicate a loose or “fluffy” (but
mechanically stable) configuration, whose volume could be
reduced further under rearrangement.
The canonical distribution follows from the maximization

of the Gibbs entropy just as in thermal equilibrium under the
constraint of a fixed average volume

V ¼
Z

dqWðqÞPcanðqÞ; ð13Þ

and has the standard Gibbs form and canonical partition
function:

PcanðqÞ ¼
1

Z
e−WðqÞ=XΘjam; ð14Þ

Z ¼
Z

dqe−WðqÞ=XΘjam: ð15Þ

If we follow the analogy with equilibrium thermodynamics,
the concepts of granular entropy and compactivity translate
into postulated laws of a granular thermodynamics (Edwards,
Brujić, and Makse, 2004):
Zeroth law: A consistent picture of compactivity as a

temperaturelike parameter requires the notion of equilibration:
two systems in physical contact should equilibrate to the same
compactivity. The required “volume” transfer is achieved by
the external drive, but needs to avoid any mixing of the
particles.
First law: The analogy with granular matter is not clear as a

distinction between heat and work is not useful for jammed
granular materials.
Second law: In any natural process, the granular entropy

always increases. The second law forms the basis of Edwards
statistical mechanics.
Third law: Our qualitative discussion of compactivity

suggests that entropy should thus be a monotonically increas-
ing function of X: loose packings at high X can be realized in
many more configurations than dense packings at low X. In
the limit X → 0 we can thus postulate that SðVÞ → const. The
limiting entropy will be finite for any disordered arrangement,
while SðVÞ ¼ 0 is achieved only for a fully ordered non-
degenerate crystal structure.

Up to now we considered only the volume V as the relevant
variable to characterize the jammed state of a granular system.
However, this is not the general case. Indeed, when the system
is shaken the grains will fill a volume V and exert a stress Σ̂ on
the boundary. Shaking after shaking, the system explores
presumably typical configurations in the configuration phase
space, which are subject to the constraint on V and also on Σ̂.
Consequently, the entropy of the system SðV; Σ̂Þ must then be
computed as a function of those observables, which in the
microcanonical ensemble can be defined as

SðV; Σ̂Þ ¼ log
Z

dqδ(V −WðqÞ)δ(VΣ̂ − Φ̂ðqÞ)Θjam; ð16Þ

where

σ̂i ¼
X
a∈∂i

di
a ⊗ fia ð17Þ

is the stress tensor associated with particle i and the sum

Φ̂ ¼
XN
i¼1

σ̂i ¼
XN
i¼1

X
a∈∂i

di
a ⊗ fia ð18Þ

is the macroscopic force-moment tensor.
In analogy to the volume ensemble, there should thus

exist a temperaturelike Lagrange multiplier associated with
the stress. Since Σ̂ is a tensor, this quantity is also a tensor,
which can be defined as

Λ̂ij ¼ V
∂Σ̂ij

∂S : ð19Þ

The tensor Λ̂ is referred to as angoricity from the Greek word
ankhos for stress (Blumenfeld and Edwards, 2009).
A simplification occurs if the stress Σ̂ is a simple hydro-

static pressure Σ̂ ¼ p. In this case the angoricity degenerates
to the scalar quantity Λ ¼ V∂p=∂S.
Considerable progress in a theoretical description of granu-

lar matter could be achieved from pure volume and stress or
force ensembles, which appear as limits of the full description
of Eq. (16). We discuss these in detail in the following. On
the other hand, it has been suggested that volume and stress
ensembles are necessarily interdependent, which would
require more sophisticated approaches to deal with their
correlations (Pugnaloni et al., 2010; Blumenfeld, Jordan,
and Edwards, 2012).

D. Volume ensemble

Pure volume ensembles neglect the force degrees of free-
dom. This is reasonable in isostatic systems, where all forces
are uniquely determined from the configurational degrees of
freedom. In this case, the statistical volume ensemble is fully
specified by the volume function Eq. (14), which relies on a
suitable space tessellation.
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1. Conventions for space tessellation

In the case of a Hamiltonian there is a unique way to
define the energy as a function of the particle configurations,
typically in terms of a superposition of all particles’ individual
kinetic and potential energy plus the energy contribution due
to interactions. Such a decomposition is not straightforward in
the case of the volume function. Nevertheless, it is natural to
express W in the form of a superposition

WðqÞ ¼
XN
i¼1

WiðqÞ ð20Þ

of nonoverlapping volume elements that tesselate the space
occupied by the packing. Wi is the volume associated with
each of the N particles. Crucially, this volume is not a function
of the configuration of the ith particle only. Naively, one could
imagine that Wi depends solely on the configurations of
particles in the first coordination shell. However, such a
restriction is mathematically not sufficient and does not apply
in general, e.g., in the Voronoi tesselation. The collective
nature of the systems’ response to perturbations induces
dependences on particles farther away. Moreover, even if
one considers only particles in the first coordination shell as a
first approximation, a precise definition of Wi is not straight-
forward. The key problem is to reference individual particles,
so that their neighbors can be defined. While this is easily
achieved in a regular crystalline packing, the difficulties
originating from a disordered contact network were realized
early on (Edwards and Oakeshott, 1989; Mounfield and
Edwards, 1994). Next we review the different definitions of
Wi in historical order.

a. Tensorial formulation

The first solution to the problem of defining WðqÞ was
proposed by Edwards and Grinev (2001). Introducing the
tensor (Edwards and Grinev, 1999a, 1999b) F̂i ¼

P
j∈∂irij ⊗

rij, where rij is the separation vector of particles i and j,
we can define the volume associated with particle i as

Wi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
det F̂i

p
, which involves only contacting particles.

The resulting total volume W ¼ P
N
i¼1 Wi is thus only an

approximation of the exact volume occupied by all N
particles. Formal corrections that allow for an exact definition
of W have been suggested, but the quantities specifying
correlations of tensors belonging to nearest neighbors are
intractable for any practical purposes (Edwards and
Grinev, 2001).

b. Quadrons

In 2D, a definition ofWi, such that Eq. (20) is exact, can be
obtained by analyzing planar packings in terms of loops and
voids (Ball and Blumenfeld, 2002; Blumenfeld and Edwards,
2003), leading to area-tesselating quadrilateral elements
referred to as quadrons. In 2D one can show that the number
of quadrons is identical to the number of configurational
degrees of freedoms (Blumenfeld and Edwards, 2003, 2006),
motivating the use of the quadrons as the elementary

“particles” of the system on which the statistical mechanics
is based. In 3D this coincidence is no longer valid
(Blumenfeld and Edwards, 2006), thus limiting the appli-
cability of the quadrons to realistic systems. Even in 2D it has
been noted that the exact tesselation is valid only in the
absence of nonconvex voids, which are actually present in a
gravitational field (Ciamarra, 2007).

c. Delaunay tessellation

For a set of points specifying the centers of spheres in a
packing, elementary Delaunay cells are simplexes with
vertices at the centers of neighboring particles. In 2D the
simplexes are triangles defined such that no other point lies
inside the circumcircle of a given triangle. In 3D the simplexes
are likewise tetrahedra defined such that no other point lies
inside the circumsphere of a given tetrahedron. In both cases a
space filling set of cells is obtained, which, however, is not
uniquely associated with a given set of particles. Thus, it is not
possible to cast this tesselation into the form of Eq. (20),
reducing its applicability to realistic systems. The Delaunay
tessellation has been used to analyze the volume statistics of
disordered sphere packings (Finney, 1970; Hiwatari, Saito,
and Ueda, 1984; Aste, 2005, 2006; Aste et al., 2007; Klumov,
Jin, and Makse, 2014), and is the cornerstone in Hales’ proof
of the Kepler conjecture (Hales, 2005).

d. Voronoi tessellation

A straightforward way to tessellate the volume of a packing
is to associate that amount of space with particle i that is closer
to it than to any other particle (Fig. 5), thus making full use of
the form of Eq. (20). This defines the Voronoi tesselation, first
introduced by the Ukrainian mathematician G. F. Voronoi in
1908, which is now widely used in mathematics and many
applied areas (Aurenhammer, 1991; Okabe et al., 2000). In the
case of spheres or points, the Voronoi tessellation is dual to the
Delaunay decomposition: the centers of the circumspheres
are just the vertices of the Voronoi graph.
Before we define the volume Wi, we first introduce the

Voronoi boundary (VB). The VB between two particles is
defined as the hypersurface that contains all the points that
are equidistant to the surfaces of both particles (Baule et al.,
2013; Portal et al., 2013; Schaller et al., 2013). If we fix our
coordinate system at the center of mass of particle i (and also
assume its orientation fixed), we can parametrize the VB in
terms of the direction ĉ from particle i [Fig. 5(b)]. A point on
the VB is found at sĉ, where s depends on the relative position
rij and orientation t̂ij of the two particles s ¼ sðrij; t̂ij; ĉÞ.
The value of s is obtained from two conditions:

(1) The point sĉ has the minimal distance to the surfaces
of each of the two objects along the direction ĉ.

(2) Both distances are the same.
As an example, the VB between two spheres of equal radii is
the same as the VB between two points at the centers of
the spheres. Therefore, condition (1) is trivially satisfied for
every s and condition (2) translates into ðsĉÞ2 ¼ ðsĉ − rijÞ2,
leading to
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s ¼ rij
2ĉ · r̂ij

; ð21Þ

i.e., the VB is the plane perpendicular to the separation vector
rij at half the separation [see Fig. 5(a)]. Already for two
spheres of unequal radii, the VB is a curved surface. Taking
into account the different radii Ri and Rj, the second condition

becomes s − Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsĉ − rijÞ2

q
− Rj, which has the solution

(Danisch, Jin, and Makse, 2010)

s ¼ 1

2

r2ij − ðRi − RjÞ2
ĉ · r̂ij − ðRi − RjÞ

: ð22Þ

Finding a solution for both conditions (1) and (2) for general
nonspherical objects is nontrivial (Baule et al., 2013; Portal
et al., 2013) and will be discussed in Sec. IV.G.2.

Having defined the VB, the exact mathematical formula for
WiðqÞ in d dimensions is given by the following orientational
integral:

WiðqÞ ¼
1

d

I
dĉ liðq; ĉÞd; ð23Þ

where liðq; ĉÞ is the boundary of the Voronoi cell in the
direction ĉ. This boundary depends on all N particle con-
figurations q in terms of a global minimization: liðq; ĉÞ is the
minimum among all VBs in the direction ĉ between particle i
and all other N − 1 particles in the packing [see Fig. 5(b)].
Formally,

liðq; ĉÞ ¼ min
j∶s>0

sðrij; t̂ij; ĉÞ: ð24Þ

Clearly, the global minimization over all particles j defining
Wi in Eq. (24) is highly difficult to treat analytically. The
Voronoi volume of a particle depends on the position of all
the other particles in the packing, a many-body interaction.
The precise knowledge of the microscopic configurations of
all particles is intractable in the thermodynamic limit.
Nevertheless, the Voronoi convention has been shown to be
the most useful way of defining the volume function, since it is
well defined for any dimension and captures the effect of
different particle shapes. The technical challenges can be
circumvented by (i) decomposing nonspherical shapes into
overlapping and intersecting spheres leading to analytically
tractable expressions for the VB, and (ii) coarse graining the
volume function over a mesoscopic length scale, which avoids
the global minimization problem.
This approach (Song, Wang, and Makse, 2008; Baule et al.,

2013) turns the volume ensemble into a predictive framework
for packings, as discussed in detail in Sec. IV. Interestingly,
the Voronoi cell of a particle can be interpreted as its available
volume in the packing. This correspondence can be demon-
strated by considering a soft interparticle potential and
evaluating the free volume for a given potential energy before
taking the hard-core limit (Song et al., 2010). Analyzing the
statistics of the Voronoi cells also provides deeper insight
into structural features of packings, e.g., by quantifying the
cell shape anisotropies (Medvedev and Naberukhin, 1987;
Luchnikov et al., 1999; Schröder-Turk et al., 2010; Schaller
et al., 2015).

2. Statistical mechanics of planar assemblies using quadrons

The quadron convention of the volume functionW was used
by Blumenfeld and Edwards (2003) to calculate the partition
function of the volume ensemble explicitly. If correlations
between particle positions are neglected, analytical results can
be obtained by introducing suitable approximations for Θjam.
The partition function is then analytically tractable and leads
likewise to predictions for the average quadron volume and
fluctuations (Blumenfeld and Edwards, 2003). The quadron
approach also allows one to assess the effect of correlations.
The lowest order correlations originate from intergranular loops
and can thus be considered as background fluctuations. In the
case of circular particles with three neighbors one finds that
taking into account correlations only due to the intergranular
loops reduces the packing density at high compactivity, but

(a)

contact network

second 
coordination
shell

(b)

FIG. 5. Illustration of the Voronoi tessellation in a packing of
monodisperse disks. (a) In this case the Voronoi boundary (VB)
between two particles is the plane perpendicular to the separation
vector at half the distance [see Eq. (21)]. The VBs of the reference
particle (green) with the particles in the first and second
coordination shells are indicated with thin black lines. (b) The
volume of a Voronoi cell associated with a given particle is
defined as the amount of space that is closer to the surface of
that particle than to the surface of any other particle. The cell
boundary liðq; ĉÞ in a given direction ĉ for a configuration q thus
follows from the global minimization Eq. (24) and the cell
volume from the orientational integral Eq. (23). The contributed
VBs of all particles along ĉ are indicated. The pink particle
contributes the smallest VB, which thus defines the boundary of
the Voronoi cell (indicated in gray). We also refer to this particle
as the “Voronoi particle” along the direction ĉ.
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increases it at low compactivity. In addition, the difference in
density due to correlations is shown to be relatively small at
around 2%–4%, which suggests that correlation-free models
might be sufficiently accurate to capture many packing proper-
ties (Blumenfeld and Edwards, 2003).

3. Γ distribution of volume cells

The analysis of the statistics of volume cells in sphere
packings reveals an interesting universality irrespective of
packing protocols and volume conventions. Aste (2006) and
Aste et al. (2007) prepared experimental packings of
∼145 000 spherical glass beads with fluidized bed techniques
and investigated structural features with x-ray tomography.
The probability density functions (PDFs) of cell volumes in
the Delaunay convention for 18 different experiments show a
surprising collapse onto a unique master curve. The master
curve is the Γ distribution

fðV; kÞ ¼ ðV − VminÞk−1
ΓðkÞχk e−ðV−VminÞ=χ ;

with shape parameter k and scale parameter χ ¼
ðhVi − VminÞ=k. Such a Γ distribution has been shown to
capture well the volume statistics in a large variety of jammed
systems (Aste et al., 2007; Aste and Di Matteo, 2008a, 2008b;
Frenkel et al., 2008; Lechenault et al., 2006; Matsushima and
Blumenfeld, 2014; Oquendo, Muñoz, and Radjai, 2016).
Its possible universality has been motivated by statistical
mechanical arguments applied to independent elementary
volume cells (Aste et al., 2007; Aste and Di Matteo,
2008a) assuming that the cells are uncorrelated. Even though
the data collapse on a Γ distribution is remarkable, it is not
clear if it is indeed a signature of a jammed state. A Poisson
point process leads likewise to a distribution of Voronoi
cell volumes that is well described by a Γ distribution (Kumar
et al., 1992; Ferenc and Néda, 2007; Lazar et al., 2013).

E. Stress and force ensemble

1. Force tilings

It was already noted in the mid 19th century that the contact
forces in a 2D packing can be mapped to a tessellation of the
plane, the so-called Maxwell-Cremona tessellation (Maxwell,
1864; Cremona, 1890). An individual tile in the tessellation
arises from the contact forces acting on a particle i: the
boundary of the tile is constructed by rotating all force vectors
by π=2 and joining them tip to end leading to a polygon [see
Figs. 6(a) and 6(b)]. If the forces on the particle all balance the
polygon is closed, because its boundary is the sum of all
contact forces. Moreover, due to Newton’s third law the tiles
of contacting particles always have a side of equal length and
orientation, which, for a N particle packing satisfying force
balance leads to a tessellation of the plane without any gaps
[Fig. 6(c)]. Note that the condition of torque balance is not
required to construct the tiles. The Maxwell-Cremona tessel-
lation underlies the mapping of contact forces to auxiliary
forces such as the void forces (Satake, 1993), loop forces (Ball
and Blumenfeld, 2002), and height fields (Henkes and
Chakraborty, 2005); see Sec. II.E.3.

An important observation is that any rearrangement of
forces changes the area of individual tiles Ai, but leaves the
overall area of the tessellation invariant if force balance is
maintained and boundary forces are unchanged. This means
that the total area is an invariant under these force rearrange-
ments (Tighe, van Eerd, and Vlugt, 2008; Tighe and Vlugt,
2010, 2011)

XN
i¼1

Ai ¼ const; ð25Þ

where the sum runs over all tiles in the tessellation. Another
manifestation is the conservation of the stress-moment tensor
(Ball and Blumenfeld, 2002; Henkes and Chakraborty, 2005;
Henkes, O’Hern, and Chakraborty, 2007). Equation (25) holds
only for frictionless grains. In frictional systems, the force tiles
are nonconvex and self-intersecting polygons, which makes
the tiling graph nonplanar and the individual tile areas do not
sum up to the overall area (Bi et al., 2015).
Maximum entropy methods in the spirit of E. D. Jaynes

information theoretic approach to statistical mechanics
(Jaynes, 1957a, 1957b) have been applied to the problem
of force statistics in a number of works (Bagi, 1997, 2003;
Kruyt and Rothenburg, 2002; Ngan, 2003, 2004; Goddard,
2004; Metzger, 2004; Radeke et al., 2004; Metzger and
Donahue, 2005; Rothenburg and Kruyt, 2009).

2. Force network ensemble

The force network ensemble (FNE) (Snoeijer et al., 2004;
Tighe and Vlugt, 2010, 2011; Tighe, van Eerd, and Vlugt,
2008; Tighe et al., 2010) motivated by the work of Bouchaud
(2002) is based on a separation of scales relevant for the
particle configurations and forces. In quantitative terms, one
can introduce the parameter

ϵ ¼ hfiji
hriji

�
dfij
drij

�
−1
; ð26Þ

where h� � �i denotes an average over all particles in the
packing and we introduce the notation fij for the normal
force component fia of contact a on particle i with particle j.
For ϵ ≪ 1 variations of the forces of order hfi result only in
vanishing changes in the particle positions rij. If the forces are
underdetermined, i.e., not uniquely fixed by the force and
torque balance equations, the forces are thus uncoupled from

(a) (c)(b)

FIG. 6. A Maxwell-Cremona tessellation. (a), (b) Rotating the
contact force vectors by π=2 and joining them tip to end leads to a
tile that can be associated with an individual particle. (b), (c)
Because of force balance every tile is closed and the collection of
tiles tesselates the plane.
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the configurational degrees of freedom. The FNE considers a
fixed contact network (a fixed set of frijg) and constructs an
ensemble of contact forces ffijg with the following proper-
ties: (i) the forces are a priori uniformly distributed as in the
Edwards ensemble, (ii) force and torque balance equations are
imposed as constraints, (iii) forces are repulsive ∀fij ≥ 0 and
satisfy the Coulomb condition Eq. (5), and (iv) a fixed external
pressure sets an overall force scale. For a small number of
spheres the resulting force distribution can be derived exactly
(Snoeijer et al., 2004). For larger packings maximum entropy
arguments can be used (Tighe, van Eerd, and Vlugt, 2008;
Tighe and Vlugt, 2010, 2011). The underlying assumptions
imply that the FNE is in principle applicable to frictional
hyperstatic systems, but is also mathematically well defined
for frictionless particles.
For an isostatic system at jamming the force network

ensemble is not needed, since the contact geometry uniquely
defines the contact forces (Lerner, During, and Wyart, 2013;
Charbonneau, Corwin, Parisi, and Zamponi, 2015;
Gendelman et al., 2016). In this case, an approximation of
PðfÞ can be calculated with the cavity method assuming a
locally treelike contact geometry corresponding to an
assumption of replica symmetry (RS) (Bo et al., 2014). We
note that a correct determination of PðfÞ requires one to take
into account subtle correlations between particle positions that
exist at jamming beyond RS and that are neglected in Bo et al.
(2014), which in the end fails to account for the nontrivial
power laws of PðfÞ at jamming. A similar situation appears in
the approximative calculation using replicas at the level of one
step replica symmetry breaking (1RSB), which also fails to
predict the correct exponents (Parisi and Zamponi, 2010). As
discussed in Sec. V.A, the correct calculation needs to be
performed at the full-RSB level since the jamming line is deep
in the Gardner phase of the model.

3. Stress ensemble

A statistical ensemble based on the stress-moment tensor
is conveniently constructed by introducing auxiliary force
variables based on the voids surrounded by contacting
particles in 2D (Ball and Blumenfeld, 2002; Henkes and
Chakraborty, 2005). If we choose the center of an arbitrary
void as the origin of a height field, we can construct the
height vectors hν iteratively as (Henkes and Chakraborty,
2005)

hν ¼ fia þ hμ: ð27Þ

Here μ and ν label voids, and fia is the force vector at the
contact that is crossed when going from the center of void μ
to the center of void ν. Since the contact forces on a particle
sum to zero due to force balance, the height vectors are well
defined and represent a one-to-one mapping of the contact
forces. The microscopic stress tensor of a single grain,
Eq. (17), σ̂i can then be expressed in terms of the height
fields (Ball and Blumenfeld, 2002)

σ̂i ¼
X
a∈∂i

ðra1 þ ra2Þ ⊗ hμ; ð28Þ

where ra1 and ra2 denote the vectors connecting void a with
the contact points. The macroscopic force-moment tensor

Eq. (18) of a macroscopic assembly of N particles occupy-
ing area A in the quadron convention is thus

Φ̂ ¼
XN
i¼1

σ̂i ¼
X
μ∈∂A

ðrμ1 þ rμ2Þ ⊗ hμ: ð29Þ

The sum in the last expressions runs over all voids
defining the boundary of the area A, since all contributions
from particles in the bulk cancel. We see that Φ̂ is
conserved under rearrangement of the contact forces in
the bulk that preserve force balance, which is a manifes-
tation of the area conservation Eq. (25). Therefore, pack-
ings with different values of Φ̂ cannot be transformed into
each other by rearranging the bulk forces. This allows us
to define a granular entropy S ¼ logΩðA; Φ̂; NÞ via the
number of force configurations ΩðA; Φ̂; NÞ leading to a
given Φ̂.
In order to obtain the canonical distribution, we divide the

system into a small partition of sizem and the remaining system
N −m, which acts as a reservoir. For frictionless isotropic
systems the only independent part of Φ̂ is the trace Γ ¼ tr Φ̂,
which represents a hydrostatic pressure p ¼ Γ=A. In this case,
the formalism simplifies and the canonical distribution is
(Henkes, O’Hern, and Chakraborty, 2007; Henkes and
Chakraborty, 2009)

PðΓmÞ ¼
ΩmðΓmÞ
ZðαÞ e−αΓm; Γm ¼

X
i;j

dijFij; ð30Þ

where α ¼ logΩNðΓÞ=∂Γ and the sum is taken over all contact
vectors and forces in the m-particle cluster.
Equation (30) leads to the following testable predictions:
• All subregions in an equilibrated packing k should
have the same granular temperature αk. Thus measuring
PðΓmÞ in two packings k and k0 yields the ratio (Henkes,
O’Hern, and Chakraborty, 2007)

log

�
PkðΓmÞPk0 ðΓ0

mÞ
PkðΓ0

mÞPk0 ðΓmÞ
�
¼ ðαk − αk0 ÞðΓm − Γ0

mÞ: ð31Þ

Moreover, the distribution PkðΓmÞ satisfies the scaling
(Henkes, O’Hern, and Chakraborty, 2007)

PkðΓmÞ ¼ Pk0 ðΓmÞe−ðαk−αk0 ÞΓm: ð32Þ

Equations (31) and (32) require that packings k and k0 are
sufficiently close in density to neglect changes in Ω due
to different volumes.

• At the isostatic point the partition sum ZðαÞ can be
evaluated analytically by summing over all force degrees
of freedom assuming a uniform distribution. In a
monodisperse system of spheres, this yields the predic-
tions (Henkes and Chakraborty, 2009) ΩðΓmÞ ¼ Γ2m for
m ≫ 1 and

α ¼ Nziso
2hΓi ; ð33Þ
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where hΓi ¼ −∂ logZ=∂α. We also obtain the exponen-
tial force distribution

PðFÞ ∝ e−αRF; ð34Þ

where R is the sphere radius.
Simulations of soft-sphere systems have confirmed pre-

dictions of Eqs. (31) and (32) for different packing densities
(Henkes, O’Hern, and Chakraborty, 2007). Equation (33)
has also been shown to hold close to the J point, but deviations
are observed for larger densities, where instead α ¼
Nahzi=ΓN is found. Here a increases monotonically from a ¼
2 for hzi > ziso (Henkes and Chakraborty, 2009).

III. PHENOMENOLOGY OF JAMMED STATES AND
SCRUTINIZATION OF THE EDWARDS ENSEMBLE

In this section we first describe the phenomenological
results characterizing the jammed states and then proceed
to review work dedicated to test the Edwards assumption of
equiprobability of jammed states.

A. Jamming in soft- and hard-sphere systems

Over the past two decades, considerable progress has been
made in our understanding of jammed particle packings. Here
we summarize the main results of this work needed for the
remainder of this review. One can refer to several recent
review articles for more details (Liu and Nagel, 2010;
Torquato and Stillinger, 2010; van Hecke, 2010; Bi et al.,
2015; Charbonneau et al., 2017).

1. Isostaticity in jammed packings

The average coordination number in packings is approx-
imately estimated by naive Maxwell counting arguments
(Maxwell, 1870; Alexander, 1998) which consider the force
variables constrained only by force and torque balance,
Eqs. (2) and (3), and Newton’s third law, Eq. (7), but ignore
the crucial constraints of the Coulomb condition, Eq. (5), and
repulsive forces, Eq. (6). In particular, attractive forces are
allowed, contradicting the fact that the forces are purely
repulsive, Eq. (6). With these caveats in mind, one obtains an
estimation of the average coordination number z assuming
(i) all degrees of freedom (dofs) in the packing are constrained
by contacts (for periodic boundary conditions), and (ii) the
number of contacts will be minimal for a generic disordered
packing. As a consequence, packings of frictionless particles
should satisfy (see Appendix A)

z ¼ 2df ; ð35Þ
where df denotes the total dofs of a single particle including
translational and rotational dofs. When Eq. (35) is satisfied the
packing is isostatic under the naive Maxwell counting argu-
ment: the number of force and torque balance equations
exactly equals the number of contact force components.
Therefore, the configurational dofs fully determine the force
dofs and vice versa, which allows one to construct ensembles
based on only configurational or force dofs. Since isostatic
packings have the minimal number of contacts for a geomet-
rically rigid packing they are also referred to as marginally

stable (Müller and Wyart, 2015). Packings with z smaller or
larger than the isostatic value are referred to as hypostatic and
hyperstatic, respectively.
Equation (35) predicts that packings of frictionless spheres

have z ¼ 6, while rotationally symmetric shapes such as
spheroids and spherocylinders have z ¼ 10 and fully asym-
metric shapes have z ¼ 12. The isostaticity for spheres is
indeed widely observed to hold very closely in experiments
and simulations for both soft- and hard-sphere systems. In fact
it was shown (Moukarzel, 1998) that noncohesive sphere
packings become exactly isostatic, when their stiffness goes to
infinity. However, if we consider a small deformation from the
spherical shape, e.g., to a spheroid, the isostatic condition
would predict a discontinuous jump in the average co-
ordination number from z ¼ 6 to 10. Instead, one finds that
packings of nonspherical shapes are in general hypostatic with
a smooth increase from the spherical isostatic z value under
deformation (Williams and Philipse, 2003; Donev et al., 2004,
2007; Wouterse, Luding, and Philipse, 2009; Schreck et al.,
2012). These hypostatic packings are indeed mechanically
stable if the effect of the shape curvature at the contact point is
taken into account (Roux, 2000; Donev et al., 2007). As a
consequence, one can construct configurations that are
mechanically stable even though there are fewer contacts
than configurational dofs per particle (see Sec. IV.G.3).
Interestingly, also for larger aspect ratios the average co-
ordination number generally stays below the isostatic value,
which is just slightly lower for spheroids and fully asymmetric
ellipsoids (Donev et al., 2004), but exhibits a much stronger
decrease for spherocylinders (Williams and Philipse, 2003;
Wouterse, Luding, and Philipse, 2009; Zhao et al., 2012;
Baule et al., 2013).
For polyhedral particles with flat faces and edges these

counting arguments need to be modified, since, e.g., two
touching faces constrain more than a single configurational
dof. Jaoshvili et al. (2010) suggested to associate every
contact with the number of configurational dofs that are
constrained by it: contact of two faces → 3 constraints; face
and edge contact → 2 constraints; and face and vertex, edge
and edge contacts→ 1 constraint. With these correspondences
the isostaticity of disordered jammed packings of tetrahedra
and other platonic solids could indeed be demonstrated
(Jaoshvili et al., 2010; Jiao and Torquato, 2011; Smith,
Fisher, and Alam, 2011).
For frictional particles the contact counting argument pro-

vides the isostatic value z ¼ dþ 1 and the range of co-
ordination numbers 4 ≤ z ≤ 6 for spheres and 4 ≤ z ≤ 12 for
general shapes (see Appendix A). For spheres it is generally
observed that z → 6 for a friction coefficient μ → 0 (frictionless
limit) and z → 4 for μ → ∞ (infinitely rough spheres); see
Sec. IV.B. For intermediate μ sphere packings are thus gen-
erally hyperstatic. Hyperstaticity is also found for frictional
ellipsoids (Schaller, Neudecker et al., 2015) and frictional
tetrahedra, when the different types of contact are translated
into constraints on the configurational dofs (Neudecker et
al., 2013).
The Coulomb condition [Eq. (5)] restricts the possible force

configurations compared with the infinitely rough limit:
a stable force configuration with a certain zðμÞ is also stable
for all larger μ values. Any determined value zðμÞ is thus in
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principle a lower bound on the possible combinations of z
and μ, although it might not be possible to generate these
combinations in practice. This highlights the fact that zðμÞ is
not unique and depends strongly on the history of the packing
generation. It should be stressed that the isostatic conjectures
are valid only under the naive Maxwell counting argument
ignoring the repulsive nature of the interactions and the
inequalities derived from Coulomb conditions. A model
generalizing Maxwell arguments to this more realistic sce-
nario was proposed by Bo et al. (2014) suggesting the
existence of a well-defined lower bound on zðμÞ; see Sec. V.A.

2. Packing of soft spheres

So far we have treated only hard spheres. A packing of soft
spheres with radius R is modeled by repulsive normal forces
(Johnson, 1985; Landau et al., 1986):

fia;n ¼ knξα; ð36Þ
where the normal overlap is ξ ¼ ð1=2Þ½2R − jr1 − r2j� > 0,
and r1;2 are the positions of the grain centers. The normal force
acts only in compression fia;n ¼ 0 when ξ < 0. The effective
stiffness kn ¼ ð8=3ÞμgR1=2=ð1 − πgÞ is defined in terms of the
shear modulus of the grains μg and the Poisson ratio πg of the
material from which the grains are made (typically μg ¼
29 GPa and πg ¼ 0.2 for spherical glass beads). The exponent
α is chosen among two possibilities: (i) α ¼ 1 for simple
harmonic springs, and (ii) α ¼ 3=2 for 3D spherical geom-
etries at the contact (Hertz forces).
The situation in the presence of a tangential force fia;τ is

more complicated. In the case of spheres under oblique
loading, the tangential contact force was calculated by
Mindlin (1949). For the special case where the partial incre-
ments do not involve microslip at the contact surface (i.e.,
jΔfia;τj < μΔfia;n, where μ is the static friction coefficient
between the spheres, typically μ ¼ 0.3) (Mindlin (1949)
showed that the incremental tangential force is

Δfia;τ ¼ ktξ1=2Δs; ð37Þ

where kt ¼ 8μgR1=2=ð2 − πgÞ, and the variable s is defined
such that the relative shear displacement between the two grain
centers is 2s. This is called the Mindlin “no-slip” solution.
Typical packing preparation protocols employ molecular

dynamics (MD) compressing an initially loose gas (Makse et
al., 1999, 2004; Makse, Johnson, and Schwartz, 2000). In 2D
it is necessary to use bidisperse mixtures in order to avoid
crystallization. Other protocols start from a random configu-
ration corresponding to a large “temperature” T ¼ ∞ initial
state. Jammed packings at T ¼ 0 are generated by bringing the
system to the closest energy minimum using conjugate-
gradient techniques to minimize the energy of the system,
which is well defined for frictionless systems (O’Hern et al.,
2002). Another protocol for numerically constructing jammed
states consists of putting particles at random positions
above the packing at a certain height and letting particles
settle under gravity (Herrmann, 1992). Also sophisticated
experimental realizations of this procedure have been devel-
oped (Pouliquen, Nicolas, and Weidman, 1997).

In the T ¼ 0 limit or the mechanical equilibrium state
assemblies of these particles exhibit a transition to the jammed
state. There exists, in particular, a critical packing density ϕc
characterizing the onset of jamming at which the static shear
moduli G∞ and the pressure p (and therefore the static bulk
modulus as well) become zero simultaneously (under decom-
pression) and the coordination number attains the isostatic
value (Makse et al., 1999). For finite N the precise value of ϕc
depends on the initial T state and the protocol employed, but
the scaling behavior of G∞ and p for each of the different α
values is observed when using the distance to jamming ϕ − ϕc
as a control parameter for packings near isostaticity. The
critical density ϕc in the T ¼ 0 limit and zero shear stress is
referred to as the J point (O’Hern et al., 2002). For quenches
starting at infinite temperature, in the thermodynamic limit
N → ∞ the distribution of ϕc values converges to a delta
function at a value ϕ� ¼ 0.639� 0.001 for frictionless mono-
disperse spheres in 3D (O’Hern et al., 2003). The J point thus
obtained is close to values typically found for rcp of hard
spheres.
The following power-law scalings have been observed by

many studies and are independent of polydispersity or
dimensionality (Makse et al., 1999, 2004; Makse, Johnson,
and Schwartz, 2000; O’Hern et al., 2002, 2003; Zhang and
Makse, 2005; Majmudar et al., 2007; Liu and Nagel, 2010;
van Hecke, 2010):

• Pressure:

p ∼ ðϕ − ϕcÞα. ð38Þ

• Static bulk modulus:

B∞ ∼ ðϕ − ϕcÞα−1. ð39Þ

• Static shear modulus:

G∞ ∼ ðϕ − ϕcÞα−1=2. ð40Þ

• Average coordination number:

z − zc ∼ ðϕ − ϕcÞ1=2; ð41Þ

where zc is the critical coordination number measured at
ϕc and agrees in fact with the isostatic value z ¼ 2df .

The square root scaling of z − zc is observed for all α values,
which indicates that this scaling is due only to the packing
geometry independent of the interaction potential. The scaling
of the pressure can be interpreted as an affine response of the
packing to deformations. This argument, which is usually
referred to as the effective medium approximation in granular
matter (Digby, 1981; Walton, 1987; Norris and Johnson,
1997; Makse et al., 1999, 2004; Jenkins et al., 2005;
Wyart, 2010; During, Lerner, and Wyart, 2013; DeGiuli,
Laversanne-Finot et al., 2014; DeGiuli, Lerner et al., 2014;
DeGiuli, Lerner, and Wyart, 2015), also predicts an exponent
α − 1 for the bulk modulus, Eq. (39) (proportional to the
second derivative of the energy) as observed (although the
scaling law has a different prefactor as expected from affine
deformations). However, the shear modulus should then
also scale with an exponent α − 2, which is not observed
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in Eq. (40), highlighting the effects of nonaffine motion under
shear (Makse et al., 1999, 2004; Magnanimo et al., 2008). The
observed scaling of the shear modulus has been reproduced
in models of disordered solids by taking into account the
nonaffine response within an approximate analytical scheme
(Zaccone and Scossa-Romano, 2011). Equation (41) has been
shown to be a bound for stability in Wyart et al. (2005) based
on physical arguments and confirmed analytically in a replica
calculation of the perceptron model of jamming (Franz et al.,
2015). Lattice models that exhibit critical behavior related
to Eqs. (39)–(41) capture the jamming transition in terms
of a percolation transition (k core or bootstrap percolation)
(Schwarz, Liu, and Chayes, 2006; Toninelli, Biroli, and
Fisher, 2006).
Anomalous behavior at point J is also indicated in the

density of normal mode frequencies (O’Hern et al., 2003;
Silbert, Liu, and Nagel, 2005, 2009; Wyart, Nagel, andWitten,
2005; Wyart et al., 2005; DeGiuli, Lerner et al., 2014;
Charbonneau, Corwin, Parisi, Poncet, and Zamponi, 2016).
In a crystal the low frequency excitations are sound modes
with a vibrational density of states ∼ωd−1 (Debye scaling). In
a disordered packing theoretical arguments based on marginal
stability predict instead (DeGiuli, Lerner et al., 2014)

DðωÞ ∼
8<
:

ωd−1 ω ≪ ω0;

ω2=ω�2 ω0 ≪ ω ≪ ω�;

const ω ≫ ω�;

ð42Þ

which is also exhibited by the perceptron model (Franz et al.,
2015) and found in simulations of jammed soft spheres in
dimensions 3–7 (Charbonneau, Corwin, Parisi, Poncet, and
Zamponi, 2016; Lerner, Düring, and Bouchbinder, 2016;
Mizuno, Shiba, and Ikeda, 2017). The ω2=ω�2 scaling has
also been observed in emulsion experiments (Lin et al., 2016).
In Eq. (42), ω� is a characteristic frequency that vanishes at
jamming as

ω� ∼ z − zc ð43Þ

and ω0 is a small threshold frequency.
At jamming the density of states thus stays nonzero for

arbitrary small frequencies. This highlights that at point J
there is an excess of low frequency modes compared with
crystals. This anomaly is sometimes seen analogous to the
boson peak observed in glassy materials (Franz et al., 2015).
The vanishing crossover frequency ω� allows one to identify a
length scale l�, which diverges upon reaching point J as
l� ∼ ðz − zcÞ−1 (Wyart, Nagel, and Witten, 2005). Such a
diverging length scale has been observed numerically in the
vibrational eigenmodes and in the response to point pertur-
bations (Silbert, Liu, and Nagel, 2005; Ellenbroek et al.,
2006; Ellenbroek, van Hecke, and van Saarloos, 2009).
However, theoretical arguments predict for point responses
l� ∼ ðz − zcÞ−1=2 (Lerner et al., 2014). The length scale l� has
been computed by Wyart (2010) and During, Lerner, and
Wyart (2013). Diverging length scales when approaching
point J from below have also been identified related to
velocity correlation functions (Olsson and Teitel, 2007) and
clusters of moving particles (Drocco et al., 2005). When

approaching point J from above finite point correlation
functions are not sufficient to detect such a length scale.
Instead, point to set correlation functions are necessary, which
can provide a quantitative description of the sensitivity of
force propagation in granular materials to boundary condi-
tions (Mailman and Chakraborty, 2011, 2012).
The concept of frequency dependent complex-valued

effective mass MeffðωÞ (Hsu et al., 2009) obtained as the
packing is subjected to a vertical acceleration at a given
frequency is directly related to the vibrational density of states
(Hu, Johnson et al., 2014). Indeed, the vibrational density of
states can be accessed experimentally through the measure-
ment of MeffðωÞ via a pole decomposition of the normal
modes of the system (Hu, Johnson et al., 2014). By measuring
the stress dependence of the effective mass, it was shown that
the scaling of the characteristic frequency ω� deviates from the
mean-field prediction, Eq. (43), in real frictional packings
(Hu, Johnson et al., 2014). Furthermore, the presence of
dissipative modes can be studied via the imaginary part of the
complex-valued effective mass (Hu, Makse et al., 2014;
Johnson, Hu, and Makse, 2015).
When friction is added, the observed packing densities and

coordination numbers at point J are generally smaller than rcp
(Makse, Johnson, and Schwartz, 2000; Silbert et al., 2002;
Kasahara and Nakanishi, 2004; Shundyak, van Hecke, and
van Saarloos, 2007; Silbert, 2010; Papanikolaou, O’Hern, and
Shattuck, 2013; Shen et al., 2014). As a function of the
friction coefficient μ the densities decrease monotonically
from ϕ ≈ 0.64 for frictionless spheres to ϕ ≈ 0.55 in the limit
of infinitely rough spheres. Experiments found much lower
packing fractions in the large friction limit (Farrell, Martini,
and Menon, 2010). The densities are also dependent on the
packing preparation for the same μ highlighting the history
dependence of frictional packings. An open question is
whether there is a well-defined lower bound on the packing
density for a given μ, which could specify random loose
packing (rlp) densities (Onoda and Liniger, 1990; Makse,
Johnson, and Schwartz, 2000): the lowest density packings
that are mechanically stable. Extremely low density mechan-
ically stable packings can be generated with additional
attractive interactions, e.g., due to adhesion. Adhesive pack-
ings of spheres are discussed in Sec. IV.F.
Likewise, the coordination number decreases monotoni-

cally for μ ≥ 0 from the isostatic frictionless value 2df ,
reaching the frictional isostatic value zμiso ¼ dþ 1 in the limit
μ → ∞. Frictional packings are thus in general hyperstatic, so
that particle configurations do not uniquely determine the
contact forces. How this indeterminacy depends on the friction
coefficient and affects the mechanical properties was inves-
tigated in detail using contact dynamics by Unger, Kertesz,
and Wolf (2005). It was also found that the contacts with large
indeterminacy are also those contacts that make up force
chains (McNamara and Herrmann, 2004).
The following scaling results at point J have been obtained

in simulations of frictional soft spheres with Hertz-Mindlin
forces (Makse, Johnson, and Schwartz, 2000; Zhang and
Makse, 2005; Shundyak, van Hecke, and van Saarloos, 2007;
Somfai et al., 2007; Henkes, van Hecke, and van Saarloos,
2010; Silbert, 2010). For the coordination number one finds a
scaling analogous to Eq. (41)
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z − zc ∼ z0ðμÞðϕ − ϕcÞ1=2; ð44Þ

where zc ≈ 2df is the frictionless isostatic value at point J and
z0ðμÞ is a weakly μ-dependent prefactor. However, other
quantities such as the critical frequency ω� and the bulk or
shear modulus do not scale with ϕ − ϕc contrary to the
frictionless case. One finds

ω� ∼ z − zμiso; G∞=B∞ ∼ z − zμiso: ð45Þ

By comparison, Eqs. (39), (40), and (41) predict the scaling
G∞=B∞ ∼ z − zc. Therefore, one can conclude that the critical
observables generally scale with the distance to isostaticity
(Wyart, 2005).

3. Packing of hard spheres

The structural properties of packings have been investigated
in considerable detail with computer simulations and experi-
ments of hard spheres satisfying constraints Eq. (1). Hard-
sphere results should coincide with those for soft spheres at
zero pressure. Awidely used simulation algorithm for jammed
hard particles is the Lubachevsky-Stillinger (LS) algorithm
(Lubachevsky and Stillinger, 1990). Here starting from a
random initial configuration of spheres in a volume with
periodic boundary conditions generated, e.g., by the random
sequential addition of spheres, the sphere radii are expanded
uniformly with a rate λ. Collisions occur due to the expansion
of the particles, which are resolved in an event-driven manner.
Forces can be calculated from the rate of exchange of
momentum per unit time. Eventually, a jammed state is
reached with diverging collision rates at the contacts and
typically 2%–3% of rattlers that remain unjammed. The
properties of the final state are then independent of the
random initial state, but depend on the expansion rate. For
λ → 0 the system is in equilibrium leading to crystallization,
while for small λ > 0 the system is able to reach a quasi-
equilibrium jammed state with a density ϕðλÞ. These states
have been characterized as long-lived metastable glass states
which in infinite dimensions are described (Parisi and
Zamponi, 2010) by the replica symmetry breaking (RSB)
theory adapted from the solution of the Sherrington-
Kirkpatrick (SK) model of spin glasses (Sherrington and
Kirkpatrick, 1975); see Secs. III.A.4 and V.
An advanced numerical technique that can deal with

perfectly rigid particles and at the same time obtain the
contact forces precisely is contact dynamics (CD), as reviewed
for instance by Radjai and Richefeu (2009). In fact, granular
structures turn out to be more stable under gravity when using
CD than any other numerical method (McNamara and
Herrmann, 2004). CD has been used extensively to explore
force networks, their fluctuations, and their indeterminacies in
frictional packings (Unger, Kertesz, and Wolf, 2005).
Experiments of hard-sphere packings go back to the

seminal work by Bernal (1960), Bernal and Mason (1960),
and Scott (1960, 1962). Indeed, in the old days Mason, a
postgraduate student of Bernal, took on the task of shaking
glass balls in a sack and “freezing” the resulting configuration
by pouring wax over the whole system. He would then
carefully take the packing apart, ball by ball, noting the

positions of contacts for each particle. Since this labor-
intensive method patented half a century ago, yet still used
in recent studies (Donev et al., 2004), other groups have
extracted data at the level of the constituent particles using x-
ray tomography (Richard et al., 2003; Aste et al., 2004; Aste,
Saadatfar, and Senden, 2005; Saadatfar et al., 2012). The most
sophisticated experiment for granular matter to date has
resolved coordinates of up to 380 000 spheres using x-ray
tomography (Aste et al., 2004; Aste, Saadatfar, and Senden,
2005). The packing densities achieved are in general sensitive
to the packing protocol, friction, and polydispersity. The effect
of boundary walls can be reduced by focusing the analysis
on bulk particles or preparing the walls with randomly
glued spheres. Mechanically stable disordered packings of
spheres are typically found in the range ϕ ≈ 0.55–0.64.
Empirical studies have shown that one can identify different
density regions depending on variations in the protocol (Aste,
2005): (i) ϕ ≈ 0.55–0.58, packings are created only by
reducing the effect of gravity (Onoda and Liniger, 1990);
(ii) ϕ ≈ 0.58–0.61, packings are unstable under tapping; and
(iii) ϕ ≈ 0.61–0.64, packings are generated by tapping and
compression (Knight et al., 1995; Nowak et al., 1997, 1998;
Philippe and Bideau, 2002). Packings in the range
ϕ ≈ 0.64–0.74, i.e., up to the fcc crystal density are usually
generated only by introducing local crystalline order. This has
been achieved experimentally by pouring spheres of equal
size homogeneously over a plate that vibrates horizontally at a
very low frequency (Pouliquen, Nicolas, and Weidman,
1997). The attained density depends on the frequency. A
similar range of densities is obtained by flux deposition of
spheres into a container with a templated surface (Panaitescu
and Kudrolli, 2014).
Establishing the number of contacting spheres in experi-

ments is somewhat challenging. The celebrated Bernal pack-
ings (Bernal and Mason, 1960) found a coordination number
close to z ¼ 6, while compressed jammed emulsions near the
jamming transition studied by confocal microscopy (Brujić et
al., 2007) found an average coordination hzi ¼ 6.08, close to
the isostatic conjecture. One generally finds that larger
densities coincide with larger values of z exhibiting a
monotonic increase over the range ϕ ≈ 0.55–0.64 from z ≈
4 to 7 (Aste et al., 2004; Aste, 2005; Aste, Saadatfar, and
Senden, 2005, 2006) largely in agreement with simulation
results on frictional soft-sphere systems at small pressure. A
new method for contact detection in jammed colloids using
fluorescent exclusion effects at the contact point was devel-
oped by Kyeyune-Nyombi et al. (2018). The method
improves detection resolution and allows precise determina-
tion of the small force distributions, coordination number,
vibrational density of states, and pair correlations (see Fig. 7).
The following consensus on the structural properties of the

pair correlation function g2ðrÞ of jammed hard spheres has
been reached from simulations and experiments for a variety
of protocols:

• A delta function peak at r ¼ σ due to contacting
particles, where σ ¼ 2R is the contact radius. The area
under the peak is the average coordination number,
which has the isostatic value ziso ¼ 2df ¼ 6 at jamming
in frictionless systems.
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• A power-law divergence due to a large number of near-
contacting particles

g2ðrÞ ∼ ðr − σÞ−γ: ð46Þ

The exponent γ has been measured as γ ≈ 0.4 in
simulations of hard spheres (Donev, Torquato, and
Stillinger, 2005b; Skoge et al., 2006; Charbonneau et
al., 2012; Lerner, During, and Wyart, 2013) and γ ≈ 0.5
in simulations of stiff soft spheres (Silbert, Grest, and
Landry, 2002; O’Hern et al., 2003; Silbert, Liu, and
Nagel, 2006). The value depends on whether rattlers are
included or not in the numerical protocol. Theoretical
arguments based on the marginal stability of jammed
packings provide (Müller and Wyart, 2015)

γ ¼ 1=ð2þ θÞ; ð47Þ

where θ is the exponent of the force distribution
PðfÞ ∼ fθ. Empirical studies find θ ≈ 0.2–0.5 (see
Sec. III.A.5).

• A split second peak at r ¼ ffiffiffi
3

p
σ and 2σ away from

contact. The precise shapes of the two peaks have not
been clearly established yet. Simulations show a strong
asymmetry of the r ¼ 2σ peak. The values 2σ and

ffiffiffi
3

p
σ

have been related to the contact network: 2σ is the
maximal distance between two particles sharing one
neighbor, while

ffiffiffi
3

p
σ is the maximal distance between

two particles sharing two (Clarke and Jónsson, 1993).
The split second peak is indicative of structural order
between the first and second coordination shells. How-
ever, no signs of crystalline order have been observed.

• Long-range order g2ðrÞ − 1 ∼ −r−4 for r → ∞ (Donev,
Stillinger, and Torquato, 2005a). This is equivalent to a
nonanalytic behavior of the structure factor SðkÞ ∼ jkj for

k → 0, which is typically seen only in systems with long-
range interactions and is uncharacteristic for liquids. The
fact that Sð0Þ ¼ 0 is characteristic of a hyperuniform
system (Torquato and Stillinger, 2003). However, the
validity of hyperuniformity at jamming was recently
questioned (Ikeda and Berthier, 2015; Wu, Olsson, and
Teitel, 2015; Ikeda, Berthier, and Parisi, 2017; Ozawa,
Berthier, and Coslovich, 2017).

4. The nature of random close packing

The nature of random close packing of frictionless hard
spheres and whether it is indeed a well-defined concept has
been a long-standing issue. Torquato, Truskett, and
Debenedetti (2000) argued that “random” and “close packed”
are at odds with each other, since inducing partial order
typically increases packing densities, such that both cannot be
maximized simultaneously. As an alternative it was suggested
to use a more quantitative approach based, e.g., on a metric
detecting bond-orientational order (Steinhardt, Nelson, and
Ronchetti, 1983). Random close packing can then be replaced
by the concept of a “maximally random jammed” (MRJ)
packing: the packing with the minimal order among all
jammed ones. In practice, all possible order metrics would
need to be checked to identify a truly random state, which is
of course not feasible. Nevertheless, many different packing
protocols and algorithms seem to robustly achieve disordered
packings with maximal densities around ϕ ≈ 0.64, which
coincides with the densities of MRJ packings for many
different order parameters (Torquato and Stillinger, 2010).
Despite early attempts to explain this reproducibility, e.g.,
based on maximum entropy arguments (O’Hern et al., 2002,
2003) and liquid state theory (Aste and Coniglio, 2004;
Kamien and Liu, 2007), there is now a general consensus
that jamming densities can be obtained over a range of
densities depending on the preparation protocol if crystalli-
zation is suppressed (Skoge et al., 2006; Chaudhuri, Berthier,
and Sastry, 2010; Ciamarra, Coniglio, and de Candia, 2010;
Hermes and Dijkstra, 2010; Charbonneau et al., 2012; Ozawa
et al., 2012). This leads to the concept of a J line, which was
first proposed theoretically in the context of a replica solution
of hard-sphere glasses at the mean-field level (d → ∞) (Parisi
and Zamponi, 2005) and other fully connected models
(Mari, Krzakala, and Kurchan, 2009). In the presence of
polydispersity in the particle size or in higher dimensions,
crystallization is strongly suppressed and the physics of the
glass transition is expected to dominate the corresponding
jamming transition. If jamming is approached from the
equilibrium fluid phase, the resulting jammed states are then
essentially the infinite-pressure limits of glassy states. A deep
understanding of jamming in this scenario has been provided
by exact solutions for d → ∞ using both dynamical mode-
coupling-type approaches (Kurchan, Maimbourg, and
Zamponi, 2016; Maimbourg, Kurchan, and Zamponi, 2016)
and static approaches adapted from the solution of the SK
model of spin glasses (Parisi and Zamponi, 2010;
Charbonneau et al., 2014a, 2014b; Franz et al., 2015;
Rainone and Urbani, 2016). Remarkably, the full RSB
d → ∞ solution predicts scaling exponents for g2ðrÞ,
Eq. (46), and the force distribution PðfÞ, Eq. (48) (see next

FIG. 7. 3D confocal image of a colloidal packing showing
green fluorescence on the particles’ surface. The method of
Kyeyune-Nyombi et al. (2018) improves detection resolution of
the particle contact network using fluorescent exclusion effects at
the contact point. Structural properties of the colloidal packing
near marginal stability that require high-resolution contact
detection thus become experimentally accessible (see Table IV).
From Kyeyune-Nyombi et al., 2018.
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section), that are in agreement with finite-dimensional mea-
surements for a range of d values even in 3D (Charbonneau et
al., 2014a, 2014b). This remarkable agreement between an
infinite-dimensional mean-field theory and 3D simulations
indicates that at jamming there is a strong suppression of
fluctuations, first of all thermal fluctuations by definition, but,
more importantly, sample to sample fluctuations which are
known to be stronger than thermal fluctuations. Similar
agreement between an infinite-dimensional result and finite
dimensions is not observed for the finite-temperature glass
transition. Thus, the critical properties of jamming related to
marginal stability appear independent of dimensionality. For a
recent review on the d → ∞ solution of hard-sphere glasses,
see Charbonneau et al. (2017). An overview of the different
density values discussed in the following is given in Tables II
and III.
Briefly, in this scenario a glass transition interrupts the

continuation of the liquid equation of state considered by Aste
and Coniglio (2004) and Kamien and Liu (2007) at densities
ϕj ∈ ½ϕd;ϕK�, where ϕd signals the dynamical glass transition
at the density at which many metastable states first appear in
the liquid phase and ϕK is the Kauzmann density of the ideal
glass. Upon compression of the metastable states [taking some
care in the preparation protocol (Charbonneau et al., 2017)]
the pressure diverges at jamming densities ϕj ∈ ½ϕth;ϕgcp�.

The lower limit is the threshold density ϕth ≈ 0.64 calculated
by Parisi and Zamponi (2010), although it should be noted that
the values calculated with replica theory come with a large
error bar due to the approximation of the liquid equation of
state (Mangeat and Zamponi, 2016). The maximal density is
the glass close packing ϕgcp ≈ 0.68 corresponding to the
infinite-pressure limit of the ideal glass ϕK. Therefore, the
ground state of jamming can be achieved in a whole range of
densities along a J line ϕj ∈ ½ϕth;ϕgcp� depending on the
density of the metastable glass phase ϕ ∈ ½ϕd;ϕK� that is
compressed to jamming. Before jamming is reached the glass
undergoes a transition to a Gardner phase, where the con-
figuration space is fragmented into an infinite fractal hierarchy
of disconnected regions, which, in turn, brings about iso-
staticity and marginal stability (Charbonneau et al., 2014a,
2014b). Indeed the states on the J line are all stable under all
possible particle rearrangements with k → ∞ in the thermo-
dynamic limit N → ∞, thus corresponding to the ground state
of jamming as discussed in Fig. 4(a). On the other hand, they
differ in the fraction α ¼ k=N ∼ const of particle rearrange-
ments required for stability.
Such a viewpoint is motivated by analogy with the full-RSB

solution of the p-spin glass (Crisanti and Leuzzi, 2006),
which is the spin-glass model corresponding to the full-RSB
solution of infinite-dimensional spheres underlying the J line
(Charbonneau et al., 2014a). By varying α one obtains states
on the J line: the value α ¼ 0 corresponds to the states at the
lower density ϕth, while α ¼ 1 corresponds to the true global
ground state of jamming at the largest density ϕgcp. Metastable
k-PD states with finite k are achieved with lower packing
fractions as depicted in Fig. 4(a) and Table I.
We conclude that the truly global ground state is actually

only one of the possible ∞-PD stable states and corresponds
to the point α ¼ 1, which is at ϕgcp. The other states along the
J line, obtained by varying 0 ≤ α < 1, can be thought of as
globally metastable (in reality they also belong to the ground
state of the J line). On the basis of this picture, we propose
four categories of jamming according to their metastability as
explained in Table I: local metastable (1-PD stable), collective
metastable (k-PD stable with finite 1 < k < ∞), globally
metastable (∞-PD stable but with 0 ≤ α < 1), and the true
global ground state (∞-PD stable and α ¼ 1). In particular the
J line corresponds to globally metastable states (∞ stable)
while the ground state corresponds to ϕgcp.
Interestingly, the phase diagram that arises from the d → ∞

solution, which corresponds to a particular packing protocol,
can be reproduced by sampling over glassy states with a
modified (nonequilibrium) measure (Charbonneau et al.,
2014a, 2017; Parisi and Zamponi, 2010); see Fig. 8(a).
Possible glass states are then predicted in the white region
of Fig. 8(a) bounded by the metastable continuation of the
equilibrium liquid and the J line. In this approach the Gardner
transition (blue line) separates stable and marginally stable
states. Crucially, for infinite pressure this nonequilibrium
sampling assigns equal probability to each jammed state at
a given density, i.e., it agrees with Edwards uniform measure.
Therefore, the nonequilibrium sampling of glassy states at
the ground state is another generalization of the Edwards
ensemble to finite pressures. Since the critical jamming

TABLE II. Density values when compressing a liquid state until
jamming avoiding crystallization (Parisi and Zamponi, 2010; Char-
bonneau et al., 2017).

Density Definition
Value in
d ¼ 3

ϕd The liquid state splits in an exponential number
of states

≈0.58

ϕK Ideal glass phase transition—jump in
compressibility

≈0.62

ϕth Divergence of the pressure of the less
dense states

≈0.64

ϕgcp Divergence of the pressure of the ideal glass ≈0.68

TABLE III. Density values when crystallization is not suppressed.
The values for ϕrlp and ϕrcp are determined within the Edwards
ensemble using a coarse-grained volume function (Song, Wang, and
Makse, 2008; Jin and Makse, 2010) (see Sec. IV.B).

Density Definition Value in d ¼ 3

ϕrlp Random loose packing:
lowest density
of a mechanically
stable packing

1
1þ ffiffi

3
p

=2
¼ 0.536… (Song, Wang,

and Makse, 2008)

ϕrcp Random close packing 1

1þ1=
ffiffi
3

p ¼ 0.634… (Song, Wang,

and Makse, 2008)
ϕf Packing freezing point

of a first-order
transition

≈0.64 (Jin and Makse, 2010)

ϕm Packing melting point
of a first-order
transition

≈0.68 (Jin and Makse, 2010)

ϕfcc Density of the
fcc crystal

π=ð3 ffiffiffi
2

p Þ ¼ 0.740 48…
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exponents calculated in this approach are the same as those
from the full-RSB solution (Rainone and Urbani, 2016), we
conclude that the observed phenomenology of jamming is at
least consistent with Edwards assumption of equiprobability
in the values of the exponents. Edwards statistical mechanics
thus captures key features of the jamming phenomenology, a
fact that is increasingly being recognized (Sharma, Yeo, and
Moore, 2016; Charbonneau et al., 2017). Highly sophisticated
simulations have recently confirmed the validity of Edwards
assumptions at the jamming transition as well (Martiniani
et al., 2017); see Sec. III.B.
Furthermore, these results highlight the fact that packing

problems, and more generally CSPs, undergo a phase tran-
sition separating a satisfiable (SAT) (hypostatic or undercon-
strained) regime from an unsatisfiable (UNSAT) (hyperstatic
or overconstrained) phase, as one varies the ratio of constraints
over variables. The jamming transition is equivalent to this
SAT-UNSAT phase transition in the broad class of continuous
CSPs, which are conjectured to belong to the same “super-
universality” class based on models displaying SAT or
UNSAT such as the celebrated perceptron model (Franz
et al., 2015; Franz and Parisi, 2016) which admits a much
simpler solution at the full-RSB level than the hard-sphere
glass.
If crystallization is not suppressed, compressing an equi-

librium liquid of monodisperse spheres can lead to partial
crystalline order (Anikeenko and Medvedev, 2007;
Anikeenko, Medvedev, and Aste, 2008; Radin, 2008; Jin
and Makse, 2010; Klumov, Khrapak, and Morfill, 2011;
Kapfer et al., 2012; Francois et al., 2013; Hanifpour et al.,

2014, 2015; Klumov, Jin, and Makse, 2014). Using the
granular entropy of Edwards statistical mechanics as treated
in Sec. II.C then allows one to identify the onset of crystalline
order with the freezing point of a first-order transition, which
is found at ϕf ≈ 0.64 (Jin and Makse, 2010). Likewise, a
melting point appears at ϕm ≈ 0.68. Between these two
densities a coexistence of disordered and ordered states
exists at the coordination number of isostaticity z ¼ 6 [see
Fig. 8(b)]. Defining rcp in this scenario as the freezing point,
two branches then exist: a disordered branch from the rlp
at ϕrlp ≈ 0.54 up to the freezing point ϕf ≈ 0.64 and an
ordered branch from the melting point ϕm ≈ 0.68 to fcc at
ϕfcc ¼ 0.74…. The signature of this disorder-order transition
is a discontinuity in the entropy density of jammed configu-
rations as a function of the compactivity. This highlights the
fact that beyond rcp, denser packing fractions of monodis-
perse spheres can be reached only by partial crystallization
up to the homogeneous fcc crystal phase in agreement with
the interpretation of rcp as a MRJ state (Torquato, Truskett,
and Debenedetti, 2000). Indeed, rcps are known to display
sharp structural changes (Anikeenko and Medvedev, 2007;
Anikeenko, Medvedev, and Aste, 2008; Radin, 2008; Aristoff
and Radin, 2009; Klumov, Khrapak, and Morfill, 2011;
Kapfer et al., 2012; Klumov, Jin, and Makse, 2014) signaling
the onset of crystallization (Torquato and Stillinger, 2010).
The first-order transition scenario observed numerically by
Jin and Makse (2010) was verified in a set of experiments of
3D hard-sphere packings (Francois et al., 2013; Hanifpour
et al., 2014, 2015). Francois et al. (2013) identified the onset
of crystallization at the freezing point ϕf ≈ 0.64 from the

FIG. 8. (a) Phase diagram in d → ∞ obtained from the nonequilibrium sampling of glassy states (Charbonneau et al., 2017). Glassy
states exist in the white region between the continuation of the equilibrium equation of state (black) and the infinite-pressure J line. The
blue line denotes the Gardner phase transition separating stable and marginally stable glass states. Glass states are possible for densities
> ϕd at which metastable states first appear in the liquid. Compressing the glass states to p → ∞ yields jammed states on the J line
ϕj ∈ ½ϕth;ϕgcp�. From Charbonneau et al., 2014b. (b) Interpretation of rcp in a 3D system made of monodisperse spheres as a first-order
freezing transition between disordered and ordered phases. In low-dimensional systems (3D and specially 2D) crystallization prevails
around rcp and precludes the appearance of the J line as discussed by Parisi and Zamponi (2010). The coordination number zj is plotted
vs the volume fraction ϕj for each packing at jamming. One can identify (i) a disordered branch which can be fitted by the equation of
state (75) derived in Sec. IV.A, (ii) a coexistence region, and (iii) an ordered branch. White particles are random clusters, light blue are
hcp, and green are fcc clusters. The dashed line from a → b denotes the states beyond crystallization, which can be reached upon
deformation of the particles (see Fig. 20). From Jin and Makse, 2010.
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variance of the Voronoi volume fluctuations (Jin and Makse,
2010), a “granular specific heat” (Aste and Di Matteo, 2008a),
and the frequency of polytetrahedral structures. The coexist-
ence line at isostaticity between ϕf ≈ 0.64 and ϕm ≈ 0.68 has
been observed not only for frictionless packings but also for
frictional ones, where high densities have been achieved by
applying intense vibrations (Hanifpour et al., 2014, 2015).
The existence of the first-order crystallization transition at

rcp is expected to be dominant in a finite-dimensional 3D
system of equal size spheres and therefore excludes the
appearance of the interesting glassy phases discussed pre-
viously unless crystallization is suppressed by heterogeneities
such as polydispersity. Interestingly, the values of the limiting
densities ½ϕth;ϕgcp� coincide approximately with the densities
of the melting and freezing points in the first-order transition
obtained for monodisperse 3D systems (Jin and Makse, 2010).
However, this coincidence is most likely coincidental since
these states are unrelated. It should be noted that the analysis
of structure and order parameters is generally supportive of the
existence of a glass-crystal coexistence mixture in the density
region 0.64 ≤ ϕ ≤ 0.68 in monodisperse sphere packings
where crystallization dominates over the glass phase. All
the (maximally random) jammed states along the segment
½ϕth;ϕgcp� can be made denser at the cost of introducing some
partial crystalline order. Support for an order-disorder tran-
sition at ϕf is also obtained from the increase of polytetrahe-
dral substructures up to rpc and its consequent decrease upon
crystallization (Anikeenko, Medvedev, and Aste, 2008).
The connection of the replica approach with the Edwards

ensemble for jammed disordered states is summarized in
Table I and Fig. 4(a) and will be discussed in detail in Sec. V.
The hierarchy of metastable jammed states k-PD with k ∈
½1;∞Þ is analogous to k-SF with k ∈ ½1;∞Þ metastable states
in spin glasses which in turn are related to the continuity of
jammed states along the J line. This is the picture emerging
from a full-RSB solution, at the mean-field level of fully
connected systems, such as the SK model of spin glasses
(Sherrington and Kirkpatrick, 1975). Thus, we expect that a
continuous jamming line of states should emerge from the
Edwards ensemble solution of the JSP, since it is another
realization of a typical NP-hard CSP.
On the other hand, the mean-field solution of the Edwards

volume ensemble (Song, Wang, and Makse, 2008) reviewed
in Sec. IV predicts a single jamming point at rcp, Eq. (82),
ϕrcp ¼ 1=ð1þ 1=

ffiffiffi
3

p Þ ≈ 0.634 for z ¼ 6. This prediction
corresponds to the ensemble average over a coarse-grained
Voronoi volume for a fixed coordination number. Since an
ensemble average over all packings at a fixed coordination
number is performed in the coarse graining of the volume
function, the obtained volume fractions ϕrcp are in fact
averaged over the J line predicted by the replica method.
Thus, ϕrcp can be associated with the state with the largest
entropy (largest complexity) along ½ϕth;ϕgcp�, expected to be
near the highest entropic state ϕth in the replica theory picture.
Indeed, high-dimensional calculations performed in Sec. IV.C
support this conjecture: the scaling obtained with dimension d
of the Edwards prediction for rcp and ϕth agree within a
prefactor; see Eqs. (95) and (99).

New possibilities to study densely packed states are opened
up by including activity on the particle level (self-propulsion),
which shifts the glass transition closer to random close
packing (Ni, Stuart, and Dijkstra, 2013).

5. Force statistics

It was realized early on that jammed granular aggregates
exhibit nonuniform stress fields due to arching effects (Jaeger,
Nagel, and Behringer, 1996; Cates et al., 1998). More recent
work has focused on the interparticle contact force network.
The key quantity is the force distribution PðfÞ, which exhibits
characteristic features at jamming as observed in both experi-
ments (Liu et al., 1995; Mueth, Jaeger, and Nagel, 1998;
Løvoll, Måløy, and Flekkøy, 1999; Makse, Johnson, and
Schwartz, 2000; Erikson et al., 2002; Brujić, Edwards, Grinev
et al., 2003; Brujić, Edwards, Hopkinson, and Makse, 2003;
Corwin, Jaeger, and Nagel, 2005; Zhou et al., 2006; Kyeyune-
Nyombi et al., 2018) and simulations (Radjai et al., 1996;
Makse, Johnson, and Schwartz, 2000; Tkachenko and Witten,
2000; O’Hern et al., 2001):

• PðfÞ has a peak at small forces (approximately at the
mean force hfi). This peak has been argued to represent
a characteristic signature of jamming (O’Hern et al.,
2001).

• For large forces, the decay of PðfÞ has been generally
measured as exponential. Although a faster than expo-
nential decay has also been observed in experiments
(Majmudar and Behringer, 2005) and simulations (van
Eerd et al., 2007).

These properties are observed in both hard- and soft-sphere
systems, largely independent of the force law.
For f → 0þ, PðfÞ converges to a power law

PðfÞ ∼ fθ; f → 0þ; ð48Þ

with some uncertainty regarding the value of the exponent
θ ≈ 0.2–0.5. The existence of this power law has been
explained by the marginal stability of the packing which is
controlled by small forces (Wyart, 2012). As a consequence, θ
is related to the exponent γ of near-contacting neighbors by
Eq. (47). A more detailed investigation of the excitation
modes related to the opening and closing of contacts suggests
that there are in fact two relevant exponents θe and θl (Lerner,
During, and Wyart, 2013): θe corresponding to motions of
particles extending through the entire systems, and θl corre-
sponding to a local buckling of particles. A marginal stability
analysis provides γ ¼ ð2þ θeÞ−1 ¼ ð1 − θlÞ=2 (Müller and
Wyart, 2015), which was also demonstrated numerically
(Lerner, During, and Wyart, 2013). Asymptotically θ ¼
minðθl; θeÞ and thus θ ¼ θl ≈ 0.2 for γ ≈ 0.4.
Theoretically, the 1RSB theory for fully connected hard-

sphere packings in infinite dimensions predicts θ ¼ 0 (Parisi
and Zamponi, 2010), while the full-RSB calculation provides
a nonzero θ ¼ 0.42… and γ ¼ 0.41… (Charbonneau et al.,
2014a, 2014b), a result corroborated theoretically with a
simpler jamming model, the perceptron model from machine
learning, which exhibits a jamming transition as well (Franz et
al., 2015; Franz and Parisi, 2016). This result further indicates
the importance of the jamming transition to general CSPs.
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The full-RSB values are seemingly in disagreement with the
scaling relations from marginal stability in the presence of
localized modes, since they predict θl ¼ 0.17…. However,
based on simulation results it has been shown that the
probability of localized modes decreases exponentially with
dimension and thus they do not contribute to the full-RSB
solution for d → ∞ (Charbonneau, Corwin, Parisi, and
Zamponi, 2015). Thus, in 3D simulations the so-called
bucklers (particles with all forces except one, usually the
smallest, approximately aligned in a plane) are removed from
the distribution decreasing the small force counting and
changing the exponent from 0.17 to 0.42 in agreement with
the full-RSB replica theory. As a consequence, θ ¼ θe in
agreement with the scaling relations.
High-resolution measurements of the contact network in 3D

allow for the experimental determination of the exponents θ
and γ; see Table IVand Fig. 7 (Kyeyune-Nyombi et al., 2018).
Here the value of the small force exponent can be estimated
due to the high resolution of contact detection. Values in the
range θ ≈ 0.11–0.17 below the full-RSB prediction are found
even when bucklers are removed. Instead of the equality
Eq. (47), the inequality γ ≥ 1=ð2þ θÞ is still observed, except
for one packing A which is presumably hyperstatic. In the
other limit of sparse graphs, calculations based on RS give
θ ¼ 0 in the thermodynamic limit using population dynamics
implying that replica symmetric calculations do not capture
the full physics of the jamming point (Bo et al., 2014)
discussed in Sec. V.A.

B. Test of ergodicity and the uniform measure
in the Edwards ensemble

Assuming ergodicity for a jammed system of grains as
proposed by Edwards (see Sec. II.C) seems contradictory at
first, but has become meaningful in light of certain seminal
compaction experiments developed over the years starting
from the work of Nowak et al. in the 1990s (Knight et al.,
1995; Nowak et al., 1997, 1998; Philippe and Bideau, 2002;
Chakravarty et al., 2003; Brujić et al., 2005; Makse, Brujić,
and Edwards, 2005; Richard et al., 2005).
Nowak et al. (1997, 1998) performed a set of experiments

of the compaction of spherical glass beads as a function of
increasing and decreasing vertical tapping intensity. Figure 9
shows their results for the packing fraction ρ versus the
tapping intensity Γ (normalized by the acceleration due to

gravity). The key observation is that the system, after initial
transient behavior on the “irreversible branch,” reaches a
“reversible branch” on which it retraces the variation of the
packing fraction upon increasing and decreasing the intensity.
The initial tapping breaks the frictional contacts that support
loose packed configurations and store information about the
system preparation. On the reversible branch, small tapping
intensities induce denser packings with packing fractions
slightly above random close packing for equal-sized spheres.
In principle, we can interpret the reversible packings as

equilibriumlike states, in which the details of the microscopic
configurations and the compaction protocol are irrelevant, as
demonstrated by the reversible nature of the states evidenced
by the unique branch traveled by the system as the external
intensity is increased and decreased. These are the states for
which we expect, in principle, a statistical mechanical
formalism to hold. The existence of such a reversible branch
has been corroborated in a number of experimental systems
with different compaction techniques, e.g., under mechanical
oscillations and vibrations, shearing, or pressure waves
(Philippe and Bideau, 2002; Chakravarty et al., 2003;
Brujić et al., 2005) and studied with theory and modeling
(Krapivsky and BenNaim, 1994; Caglioti et al., 1997;
Nicodemi, Coniglio, and Herrmann, 1997a, 1997b, 1997c,
1999; Nicodemi, 1999; Prados, Brey, and Sanchez-Rey,
2000). However, this interpretation has been challenged in
a number of studies of ergodicity in jammed matter.
Systems that are subjected to a constant drive such as

infinitesimal tapping or also small shear are able to explore
their phase space dynamically, such that ergodicity can be
tested directly by comparing time averages and averages with
respect to the constant volume ensemble. We stress here that
only infinitesimal driving forces should be applied to test
equiprobable states (see discussion in Sec. VI). An agreement
of the two averages has indeed been observed in simple
models (Berg, Franz, and Sellitto, 2002; Gradenigo et al.,

TABLE IV. Structural properties of a 3D colloidal packing near
marginal stability using high-resolution measurements of the contact
network (Kyeyune-Nyombi et al., 2018). Three slightly different
packing protocols have been used. Instead of the equality (47), the
weak force exponent θ [Eq. (48)] and the small gap exponent γ
[Eq. (46)] are found to satisfy the inequality γ ≥ 1=ð2þ θÞ (Wyart,
2012) (except for packing A which might be hyperstatic). The
exponent θ does not change appreciable whether bucklers are
included or not.

Packing N z ϕ θ γ 1=ð2þ θÞ
A 1393 7.57 0.66(8) 0.110(5) 0.42(2) 0.474(1)
B 1263 6.79 0.62(4) 0.143(4) 0.62(2) 0.467(1)
C 1486 6.64 0.64(7) 0.170(6) 0.75(3) 0.461(1)

FIG. 9. The packing fraction ρ as a function of the shaking
intensity Γ from experiments of granular packings undergoing
vertical tapping. The intensity is defined as the ratio of the peak
acceleration during a single tap to the gravitational acceleration.
The system is prepared initially at low packing fraction and
subjected to taps of increasing intensity. The tapping intensity is
then successively reduced, and the system falls on a reversible
branch, where the system retraces the density vs intensity
behavior upon subsequent increases and decreases of the inten-
sity. From Nowak et al., 1998.
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2015), as well as soft-sphere systems with a small number of
particles N ¼ 30 (K. Wang et al., 2010; Wang et al., 2012).
Some recent systematic results are more controversial

though, motivating a continued investigation of this concept
(Irastorza, Carlevaro, and Pugnaloni, 2013). A detailed and
rigorous numerical analysis confirms that, at low tapping
intensities, the system cannot be considered to be ergodic:
Two different realizations of the same preparation protocol do
not correspond to the same stationary distribution, indicated
by a statistical test of data for both the packing density
(Paillusson and Frenkel, 2012; Paillusson, 2015) using vol-
ume histograms sampled over time (McNamara et al., 2009a,
2009b) and the trace of the force-moment tensor (Gago, Maza,
and Pugnaloni, 2016). When considering the fraction of
persistent contacts as a function of tapping intensity, one
observes that the nonergodic regime coincides with a larger
percentage of persistent contacts, while such contacts are
almost absent in the ergodic regime (Gago, Maza, and
Pugnaloni, 2016). The picture that emerges is that the break-
down of ergodicity is connected to the presence of contacts
that do not break under the effect of the tapping. In accordance
with physical intuition, the system cannot sample its whole
phase space, but is stuck in specific regions with the
consequent breaking of ergodicity. An additional reason to
doubt the validity of ergodicity is the violation of the time
reversal symmetry due to dissipation (Dauchot, 2007).
Ergodicity is also intimately related to the existence of

nonequilibrium fluctuation-dissipation relations (FDRs) char-
acterized by an effective temperature (Cugliandolo, 2011). For
equilibrium systems, the FDR is a very general result relating
time correlations and responses through the temperature of the
thermal environment. Nonequilibrium FDRs have been shown
to hold in a wide range of systems starting with the work of
Cugliandolo, Kurchan, and Peliti (1997), e.g., for glassy
systems (Bellon and Ciliberto, 2002; Crisanti and Ritort,
2003; Leuzzi, 2009) and models of driven matter (Berthier,
Barrat, and Kurchan, 2000; Loi, Mossa, and Cugliandolo,
2008) [see also the review by Marconi et al. (2008)]. It was
recently demonstrated in single molecule DNA driven out of
equilibrium by an optical tweezer (Dieterich et al., 2015).
Nonequilibrium FDRs and effective temperatures are often
linked to the slow modes of the relaxation in a glassy phase
(Cugliandolo, Kurchan, and Peliti, 1997). In granular com-
paction, the relaxation to the final density is similarly slow,
following an inverse logarithmic law under tapping
(Krapivsky and BenNaim, 1994; Nowak et al., 1997, 1998)
and a Kohlrausch-Williams-Watts law under shear (Lu,
Brodsky, and Kavehpour, 2008). The fluctuations induced
by the continuous driving allow for the definition of an
effective temperature, which, in an ergodic system, should
agree with the granular temperature associated with the
canonical volume ensemble (Cugliandolo, 2011). This allows
for an indirect test of ergodicity, which has been established in
a number of systems, both toy models (Nicodemi, 1999;
Barrat et al., 2000; Brey, Prados, and Sanchez-Rey, 2000;
Dean and Lefèvre, 2001; Fierro, Nicodemi, and Coniglio,
2002a, 2003; Lefèvre, 2002; Lefèvre and Dean, 2002; Prados
and Brey, 2002; Coniglio et al., 2004; Nicodemi et al., 2004;
Tarjus and Viot, 2004) and more realistic ones using MD
simulation of slowly sheared granular materials (Makse and

Kurchan, 2002), as well as experiments measuring effective
temperatures in colloidal jammed systems (Song, Wang, and
Makse, 2005) and slowly sheared granular materials in a
vertical Couette cell (Potiguar and Makse, 2006; Wang, Song,
and Makse, 2006; Wang et al., 2008) and vibrating cells
(Ribiere et al., 2007). The observation of ratcheting in
packings of polygonal particles under a cyclic load
(Alonso-Marroquín and Herrmann, 2004) sheds some doubt
about the exploration of configuration space due to systematic
irreversible displacements on the grain scale: not only is time
reversibility violated, but a steady state does not seem to be
reached.
The concept of granular temperature or compactivity X

raises the question whether it is a well-defined quantity at all.
There are essentially two different methods to calculate X
from packing data: (i) from the statistics of elementary volume
cells. Exploiting the analogy with equilibrium statistical
mechanics, X can be derived by thermodynamic integration
over the inverse volume fluctuations (Nowak et al., 1998;
Schröter, Goldman, and Swinney, 2005; Lechenault et al.,
2006; Ribiere et al., 2007; Briscoe et al., 2008; Jin and Makse,
2010). Alternatively, one can use analytical expressions either
for the volume distribution, such as the Γ distribution (Aste
et al., 2007; Aste and Di Matteo, 2008a, 2008b) or for X itself,
derived from idealized solutions using quadrons (Blumenfeld
and Edwards, 2003; Blumenfeld, Jordan, and Edwards, 2012).
(ii) Using an overlapping histograms approach (Dean and
Lefèvre, 2003; McNamara et al., 2009a). The protocol
independence of X obtained from a fit to the quadron solution
was shown by Becker and Kassner (2015). Zhao and Schröter
(2014) systematically compared four different ways of meas-
uring X from the same experimental data set of a binary disk
packing. Interestingly, only two of the methods have been
shown to agree quantitatively once the density of states is also
included as an experimental input. This highlights possible
inconsistencies between different definitions of X.
The equilibration of the temperaturelike parameters in

Edwards statistical mechanics was demonstrated in experi-
ments (Schröter, Goldman, and Swinney, 2005; Jorjadze
et al., 2011; Puckett and Daniels, 2013). However, Puckett
and Daniels (2013) showed only the angoricity and not the
compactivity to equilibrate. An upper bound on the Edwards
entropy in frictional hard-sphere packings was recently
suggested (Baranau et al., 2016).
Recent criticism by Blumenfeld et al. (2016) claimed that

the volume function is per se not suitable as the central
concept for a statistical mechanical approach, since the
volume is defined by the boundary particles and W is thus
independent of the configurations of bulk particles, i.e.,
∂W=∂qi ¼ 0 for these degrees of freedom. As a consequence,
the resulting entropy is miscalculated due to miscounting of
these configurations. However, Becker and Kassner (2017)
showed that the vanishing derivatives are still consistent with
statistical mechanics. Even if W is independent of some
degrees of freedom, the resulting partition function still takes
these into account and thus allows the correct calculation of
macroscopic observables in terms of expectation values.
Related to ergodicity, the second controversial concept

underlying Edwards statistical mechanics is the assumption
of equiprobability of jammed microstates; see Fig. 4(a). Since
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Edwards initial conjecture, most studies have focused on
testing the validity of the consequences of this assumption
rather than testing it directly. On the other hand, a direct test
requires the evaluation of all possible jammed configurations
and counting the occurrence of distinct microstates, which is
possible in model systems (Bowles and Ashwin, 2011;
Slobinsky and Pugnaloni, 2015a, 2015b). For more realistic
packings, such a direct test has long been restricted to small
numbers of particles due to the prohibitively large number of
resulting jammed states. Some of the first direct tests for up to
N ¼ 14 particles have shown a highly nonuniform distribu-
tion, suggesting that the structural and mechanical properties
of dense granular media are not dominated equally by all
possible configurations as Edwards assumed, but by the most
frequent ones (Xu, Blawzdziewicz, and O’Hern, 2005; Gao,
Blawzdziewicz, and O’Hern, 2006; Gao et al., 2009). It was
argued that the nonuniformity, which is manifest in a broad
distribution of basin volumes in the energy landscape that
identify jammed states, is due to the fast quench into the
energy minima (Wang et al., 2012). Moreover, it is not clear if
the nonuniformity survives for larger system sizes.
Remarkable recent progress has been able to conclusively

validate Edwards equiprobability assumption for realistic
system sizes. Advances in numerical methods have enabled
a direct computation of basin volumes of distinct jammed
states of up to N ¼ 128 polydisperse frictionless spheres with
a hard core and soft shell in both 2D and 3D (Xu, Frenkel, and
Liu, 2011; Asenjo, Paillusson, and Frenkel, 2014; Martiniani
et al., 2016a, 2016b, 2017). The spheres are jammed by
equilibrating the fluid phase, inflating the particles, and then
minimizing the energy to produce mechanically stable pack-
ings at a given packing density. The minimization procedure
finds individual packings with a probability pi proportional to
the volume vi of their basin of attraction. The number of
jammed states is ΩðϕÞ ¼ VJðϕÞ=hviðϕÞ, where hviðϕÞ is the
average basin volume and VJðϕÞ is the total phase space
volume. The observation that different basins have different
volumes for a range of ϕ values already implies that they will
not be equally populated and thus equiprobability breaks
down for these densities. However, as shown by Asenjo,
Paillusson, and Frenkel (2014), the granular entropy still
satisfies extensivity if one considers the Gibbs entropy

S�G ¼ −
X
i

pi logpi − logN!. ð49Þ

The subtracted term logN! ensures that two systems in
identical macrostates are in equilibrium under an exchange
of particles and is required for extensivity (Swendsen, 2006;
Frenkel, 2014; Cates and Manoharan, 2015). In order to
test equiprobability one can compare S�G with the likewise
modified Boltzmann expression S�B ¼ logΩðVÞ − logN!. The
Gibbs entropy satisfies S�G ≤ S�B with equality when all pi are
equal, pi ¼ 1=Ω. Remarkably, S�G indeed approaches S�B as
ϕ → ϕ� for a specific packing density ϕ� (see Fig. 10)
(Martiniani et al., 2017). At ϕ� the basin volumes decorrelate
from structural observables such as pressure, coordination
number, etc. Furthermore, using a finite size scaling analysis
one can show that ϕ� coincides with the density at which
pressure fluctuations diverge as N → ∞, which is possible

only at the jamming transition ϕJ: ϕ�
N→∞ ¼ ϕJ

N→∞. The
comprehensive study by Martiniani et al. (2017) thus dem-
onstrates that Edwards assumption of equiprobability indeed
holds at the jamming transition, which corresponds to the
point of maximum entropy. Moreover, it is shown that
equiprobability is still satisfied over the whole range of ϕ
values if one conditions on a fixed value of the pressure
indicating that the generalized stress-volume Edwards ensem-
ble is also a robust description.
In general, it is important to keep in mind that equiprobability

will not hold for all possible packing algorithms. For example,
the protocol used by Atkinson, Stillinger, and Torquato (2014)
to generate maximally random jammed monodisperse disk
packings based on a linear programming algorithm (Torquato
and Jiao, 2010) samples a particular subset of all possible
jammed states, which have only a very low probability of
occurrence in the Edwards ensemble. Charbonneau et al.
(2017) showed that the configurational entropy of jammed
packings resulting from adiabatic compression of glassy states
is systematically smaller than the one obtained from Edwards
uniform measure. Hence, this protocol generates exponentially
fewer packings than are possible. A framework to include
protocol dependence in an Edwards-type ensemble was sug-
gested (Paillusson, 2015). Even without such an extension,
recent theoretical work has shown that the predictions resulting
from Edwards assumptions are indeed in excellent agreement
with empirical data, confirming, e.g., the critical properties of
hard spheres at jamming (Charbonneau et al., 2017) (see
Sec. III.A.4) and jamming densities in a wide range of different
systems as reviewed in Sec. IV. Conceptually, it is possible to
resolve the problem of protocol dependence if one starts from
the very beginning by defining the metastable jammed states
and not the protocols, since then one avoids the whole question
of the ergodic hypothesis or protocol dependence or similar
issues, which are not really essential for Edwards statistics. We
will discuss in detail this line of reasoning in Sec. V by
exploiting an analogy between metastable jammed states and
the metastable states of spin-glass systems.

FIG. 10. Recent numerical results confirm Edwards equiprob-
ability assumption at the jamming transition. Gibbs entropy
Eq. (49) and Boltzmann entropy S�B ¼ logΩðVÞ − logN! dem-
onstrating equiprobability at ϕ� ≈ 0.82 forN ¼ 64 particles. S�B is
computed parametrically (“Gauss”) and nonparametrically using
a kernel density estimate (“KDE”). From Martiniani et al., 2017.
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IV. EDWARDS VOLUME ENSEMBLE

In this section we focus on the Voronoi convention to define
the microscopic volume function of an assembly of jammed
particles. As discussed in detail, Edwards statistical mechanics
of a restricted volume ensemble can then be cast into a
predictive framework to determine packing densities for both
spherical and nonspherical particles. In the next sections we
outline the mean-field statistical mechanical approach based
on a coarse graining of the Voronoi volume function, Eq. (23).
In Secs. IV.C–IV.F, we discuss different aspects of packings of
spheres, such as the effects of dimensionality, bidispersity, and
adhesion. In Sec. IV.G we focus on packings of nonspherical
shapes. A comprehensive phase diagram classifying packings
of frictional, frictionless, adhesive spheres, and nonspherical
shapes is presented in Sec. IV.H.

A. Mean-field calculation of the microscopic volume function

The key question is how analytical progress can be made
with the volume function, Eq. (23). The global minimization
in the definition of liðĉÞ, Eq. (24), implies that the volume
function is a complicated nonlocal function. This global
character indicates the existence of strong correlations and
greatly complicates the calculation of the partition function
in the Edwards ensemble approach. In order to circumvent
these difficulties, we review here a mean-field geometrical
viewpoint developed in a series of papers (Briscoe et al.,
2008, 2010; Song, Wang, and Makse, 2008; Meyer et al.,
2010; Song et al., 2010; K. Wang et al., 2010; Wang, Song,
Briscoe et al., 2010; Wang, Song, Jin et al., 2010; Wang et
al., 2011; Baule et al., 2013; Portal et al., 2013; Baule and
Makse, 2014; Bo et al., 2014; Liu et al., 2015), where the
central quantity is not the exact microscopic volume func-
tion, but rather the average or coarse-grained volume of an
individual cell in the Voronoi tessellation. The packing
density ϕ of a system of monodisperse particles of volume
V0 is given by

ϕ ¼ NV0P
N
i¼1 Wi

¼ V0

1
N

P
N
i¼1 Wi

: ð50Þ

In the limit N → ∞ we replace the denominator by the
ensemble averaged volume of an individual cell W̄ ¼ hWiii:
ð1=NÞPN

i¼1 Wi → W̄ as N → ∞. As a result the volume
fraction is simply

ϕ ¼ V0=W̄: ð51Þ

Considering Eq. (23), we can perform an ensemble average to
obtain

W̄ ¼
�
1

d

I
dĉliðĉÞd

�
i

¼ 1

d

I
dĉhliðĉÞdii

¼ 1

d

I
dĉ

Z
∞

c�ðĉÞ
dccdpðc; zÞ: ð52Þ

In the last step we introduced the PDF pðc; zÞ which is the
probability density to find the VB at a value c in the direction ĉ.
This involves a lower cutoff c� in the direction ĉ due to the
hard-core boundary of the particle. Crucially, we assume that
the PDF is a function of c and the coordination number z only
rather than a function of the exact particle configurations in the
packing. This is the key step in the coarse-graining procedure,
which replaces the exact microscopic information contained in
liðĉÞ by a probabilistic quantity. In the following, we focus on
spheres, where pðc; zÞ ¼ pðc; zÞ and c�ðĉÞ ¼ R due to the
statistical isotropy of the packing and the isotropy of the
reference particle itself. More complicated shapes are treated in
Sec. IV.G.
We now introduce the cumulative distribution function

(CDF) P>ðc; zÞ via the usual definition pðc; zÞ ¼
−ðd=dcÞP>ðc; zÞ. Equation (52) becomes then in 3D

W̄ðzÞ ¼ 4π

3

Z
∞

R
dcc3pðc; zÞ

¼ V0 þ 4π

Z
∞

R
dcc2P>ðc; zÞ; ð53Þ

where V0 ¼ ð4π=3ÞR3. The advantage of using the CDF P>
rather than the PDF is that the CDF has a simple geometrical
interpretation. We notice first that P> contains the probability
to find the VB in a given direction ĉ at a value larger than c,
given z contacting particles. But this probability equals the
probability thatN − 1 particles are outside a volumeΩ centered
at c relative to the reference particle (Fig. 11). Otherwise, if they
were inside that volume, they would contribute a VB smaller
than c. The volume Ω is thus defined as

ΩðcÞ ¼
Z

drΘ(c − sðr; ĉÞ)Θ(sðr; ĉÞ); ð54Þ

where sðr; ĉÞ parametrizes the VB in the direction ĉ for
two spheres of relative position r, Eq. (21). ΘðxÞ denotes
the usual Heaviside step function. Because of the isotropy of

c

V *(c)

S*(c)

2R

FIG. 11. The condition to have the VB in the direction ŝ from
the reference particle (green sphere) at the value c is geometri-
cally related to the exclusion volume Ω for all other particles
(blue spheres). Taking into account the conventional hard-core
excluded volume leads to the Voronoi excluded volume, Eq. (57)
(the moon phase—gray volume V�) and Voronoi excluded
surface S�, Eq. (57) (orange line).
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spheres, the direction ĉ can be chosen arbitrarily. We refer to Ω
as the Voronoi excluded volume, which extends the standard
concept of the hard-core excluded volume Vex that dominates
the phase behavior of interacting particle systems at thermal
equilibrium (Onsager, 1949).
This geometrical interpretation allows us to connect

P>ðc; zÞ with the N-particle PDF PNðfr1; r2;…; rNgÞ in an
exact way. Without loss of generality we denote the reference
particle i as particle 1. Then P>ðc; zÞ ¼ P>ðr1;ΩÞ, i.e., the
probability that the N − 1 particles apart from particle 1 are
outside the volume Ω. Since PNðfr1; r2;…; rNgÞ expresses
the probability to find particle 1 at r1, particle 2 at r2, etc., we
have (Jin et al., 2010)

P>ðr1;ΩÞ ¼ C
Z

drN−1PNðfr1; r2;…; rNgÞ

×
YN
i¼2

½1 −mðri − r1;ΩÞ�; ð55Þ

where C ensures proper normalization. The indicator function
mðr;ΩÞ is given by

mðr;ΩÞ ¼
8<
:

1; r ∈ Ω;

0; r ∉ Ω.
ð56Þ

Equation (55) is the starting point for the calculation of
P>ðc; zÞ from a systematic treatment of the particle correla-
tions as discussed in Sec. IV.D for 2D packings (Jin, Puckett,
and Makse, 2014) and in Sec. IV.C for high-dimensional
packings (Jin et al., 2010). Here we proceed with a phenom-
enological approach based on an exact treatment in 1D which
is used as an approximation to the 3D case, as originally
developed by Song, Wang, and Makse (2008).
We can first separate contributions to P> stemming from

bulk and contacting particles. We introduce two CDFs, the
bulk contribution PB and the contact contribution PC:

• PB denotes the probability that spheres in the bulk are
located outside the moon-phase gray volume V� in
Fig. 11. The volume V� is the volume excluded by Ω
for bulk particles and takes into account the overlap
between Ω and the hard-core excluded volume Vex:

V� ¼ Ω −Ω ∩ Vex

¼
Z

drΘðr − 2RÞΘ(c − sðr; ĉÞ)Θ(sðr; ĉÞ): ð57Þ

We call V� the Voronoi excluded volume.
• PC denotes the probability that contacting spheres are
located outside the boundary of the gray area indicated in
orange in Fig. 11 and denoted S�. The surface S� is the
surface excluded by Ω for contacting particles:

S� ¼ ∂Vex ∩ Ω

¼
I

dr̂Θ(c − sðr; ĉÞ)Θ(sðr; ĉÞ)
				
r¼2R

; ð58Þ

where ∂Vex denotes the boundary of Vex.

A key assumption to make analytical progress is to assume
PB and PC to be statistically independent, thus P> ¼ PBPC.
There is no a priori reason why this should be the case, so the
independence should be checked a posteriori from simulation
data. For spheres and nonspherical particles close to the
spherical aspect ratio, it has been verified that independence
is a reasonable assumption (Song, Wang, and Makse, 2008;
Baule et al., 2013). It is then natural to consider only PC to be
a function of z. Therefore,

P>ðc; zÞ ¼ PBðcÞ × PCðc; zÞ: ð59Þ

We now derive a functional form of the PB term. In 1D, the
distribution of possible arrangements of N hard rods in a
volume V can be mapped to the distribution of ideal gas
particles by removing the occupied volume NV0 (Rényi,
1958; Palásti, 1960; Krapivsky and BenNaim, 1994; Tarjus
and Viot, 2004). The probability to locate one particle at
random outside the volume V� in a system of volume
V − NV0 is then P>ð1Þ ¼ 1 − V�=ðV − NV0Þ. For N ideal
particles, we obtain

P>ðNÞ ¼
�
1 −

V�

V − NV0

�
N
: ð60Þ

The particle density is ~ρ ¼ N=ðV − NV0Þ. Therefore

lim
N→∞

P>ðNÞ ¼ lim
N→∞

�
1 −

~ρV�

N

�
N
¼ e−~ρV�

: ð61Þ

In the thermodynamic limit the probability to observe N
particles outside the volume V� is given by a Boltzmann-like
exponential distribution. In this limit, the particle density
becomes

~ρ ¼ lim
N→∞

1
1
N

P
N
i¼1 Wi − V0

¼ 1

W̄ − V0

: ð62Þ

While Eq. (62) is exact in 1D, the extension to higher
dimensions is an approximation: even if there is a void with
a large enough volume, it might not be possible to insert a
particle due to the constraint imposed by the geometrical
shape of the particles (which does not exist in 1D).
Nevertheless, in what follows, we assume the exponential
distribution of Eq. (61) to be valid in 3D as well and write

PBðcÞ ¼ e−~ρV�ðcÞ; ð63Þ

where the Voronoi excluded volume can be calculated
explicitly from Eq. (57):

V�ðcÞ ¼ V0

��
c
R

�
3

− 4þ 3
R
c

�
: ð64Þ

Furthermore, we also assume PC to have the same expo-
nential form as Eq. (63), despite not having the large number
approximation leading to it (the maximum coordination is
the kissing number 12). Introducing a surface density σðzÞ,
we write
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PCðcÞ ¼ e−σðzÞS�ðcÞ; ð65Þ

where the Voronoi excluded surface follows from Eq. (58):

S�ðcÞ ¼ 2S0

�
1 −

R
c

�
; ð66Þ

where S0 ¼ 4πR2. To obtain an expression for σðzÞ we
calculate the average hS�i with respect to the PDF
−ðd=dcÞPCðcÞ, which yields a simple result (Song, Wang,
and Makse, 2008; Song et al., 2010; Wang et al., 2011)

hS�i ≈ 1=σðzÞ: ð67Þ

In turn, hS�i is defined as the average of the solid angles of the
gaps left between z contacting spheres around the reference
sphere. An alternative operational definition assuming an
isotropic distribution of contact particles is as follows:

(i) Generate z contacting particles at random.
(ii) For a given direction ĉ, determine the minimal value

of the VB, denoted by cm.
(iii) The average hS�i follows as a Monte Carlo (MC)

average in the limit of n → ∞ samples

hS�i ¼ lim
n→∞

1

n

Xn
i¼1

S�ðcm;iÞ; ð68Þ

where cm;i is the cm value of the ith sample.
Simulations following this procedure and consider-
ing z ¼ 1 up to the kissing number z ¼ 12 suggest
that

σðzÞ ≈ z
4π

ffiffiffi
3

p
; z > 1; ð69Þ

for a chosen radius R ¼ 1=2. The exact constants
appearing in this expression are motivated from an
exact treatment of the single particle case plus
corrections due to the occupied surface of contact
particles (Song et al., 2010; Wang et al., 2011).

Because of the dependence of ~ρ on W̄, the CDF P> is
thus

P>ðc; zÞ ¼ exp

�
−

V�ðcÞ
W̄ − V0

− σðzÞS�ðcÞ
�
; ð70Þ

where V�, S�, and σ are given by Eqs. (64), (66), and (69).
Overall, Eq. (70) with Eq. (53) leads to a self-consistent
equation to determine W̄ as a function of z:

W̄ðzÞ ¼ V0 þ 4π

Z
∞

R
dcc2 exp

�
−

V0

W̄ðzÞ − V0

×

�
c3

R3
− 4þ 3

R
c

�
− σðzÞ2S0

�
1 −

R
c

��
ð71Þ

for which remarkably an analytical solution can be found. By
using Eqs. (64) and (66), Eq. (71) is satisfied when (Song,
Wang, and Makse, 2008)

d
dc

�
1

w

�
3
R
c

�
þ σðzÞS�ðcÞ

�
¼ 0; ð72Þ

where the free volume is w≡ ðW̄ − V0Þ=V0. Then, with
Eq. (66) we obtain the solution for w

wðzÞ ¼ 3

2S0σðzÞ
¼ 2

ffiffiffi
3

p

z
; ð73Þ

using Eq. (69) and setting R ¼ 1=2 for consistency.
As the final result of this section, we arrive at the coarse-

grained mesoscopic volume function

W̄ðzÞ ¼ V0 þ
2

ffiffiffi
3

p

z
V0; ð74Þ

which is a function of the observable coordination number z
rather than the microscopic configurations of all the particles
in the packing. With Eq. (50), we also obtain the packing
density as a function of z:

ϕðzÞ ¼ V0

W̄
¼ z

zþ 2
ffiffiffi
3

p : ð75Þ

Equation (75) can be interpreted as an equation of state of
disordered sphere packings. In the next section we will show
that it corresponds to the equation of state in z–ϕ space in the
limit of infinite compactivity.

B. Packing of jammed spheres

In the hard-sphere limit angoricity can be neglected, such
that the statistical mechanics of the packing is described by
the volume function alone. The partition function is then given
by Edwards canonical one, Eq. (15). With the result on the
coarse-grained volume function it is possible to go over from
the fully microscopic partition function Eq. (15) to a meso-
scopic one (Song, Wang, and Makse, 2008; Wang et al.,
2011). To this end we change the integration variables in
Eq. (15) from the set of microscopic configurations q ¼
fq1;…;qNg (positions and orientations of the N particles) to
the volumes WiðqÞ, Eq. (23), of each cell in the Voronoi
tessellation. Since the microscopic volume function is given as
a superposition of the individual cells, Eq. (20), the partition
function Eq. (15) can be expressed as

Z ¼
YN
i¼1

Z
dWigðWÞe−

P
N
i¼1

Wi=XΘjam: ð76Þ

Here the function gðWÞ for W ¼ fW1;…;WNg denotes the
density of states. In the coarse-grained picture all the volume
cells are noninteracting and effectively replaced by the volume

Baule et al.: Edwards statistical mechanics for jammed …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015006-27



function, Eq. (74). The partition function thus factorizes
Z ¼ ZN

i , where

ZiðXÞ ¼
�Z

dWgðWÞe−W=XΘjam

�
N
. ð77Þ

Averages over the volume ensemble as well as all thermo-
dynamic information is thus accessible via Eq. (77). The
crucial step to go from the full microscopic partition function
Eq. (15) to Eq. (77) is to introduce the density of states gðWÞ
for a given volume W. Although this step formally simplifies
the integral, the complexity of the problem is now transferred
to determining gðWÞ, which is in principle as difficult to solve
as the model itself. In Eq. (77), X is the compactivity
measured in units of the particle volume V0, and Θjam imposes
the condition of jamming.
In the mean-field view developed in the previous section,

W is directly related to the geometrical coordination number z
via Eq. (74). Therefore, we map gðWÞ to gðzÞ, the density
of states for a given z via a change of variables gðWÞ ¼R
PðWjzÞgðzÞdz, where PðWjzÞ is the conditional probability

of a volumeW for a given z, which, with Eq. (74), is given by
PðWjzÞ ¼ δ(W − W̄ðzÞ), where we neglected fluctuations
in z (Wang, Song, Jin et al., 2010). Substituting these two
equations into Eq. (77) effectively changes the integration
variable from W to z leading to the single particle (isostatic)
partition function

ZisoðX; ZmÞ ¼
Z

6

Zm

gðzÞ exp
�
−
2

ffiffiffi
3

p

zX

�
dz: ð78Þ

The jamming condition is now absorbed into the integration
range, which constrains the coordination number to isostatic
packings (therefore the name isostatic partition function).
Note that in this mesoscopic mean-field approach the force
and torque balance jamming conditions from Θjam, Eq. (10),
are incorporated when we set the coordination number to the
isostatic value. Thus, in this way, we circumvent the most
difficult problem of implementing the force jamming con-
dition, Eq. (10).
More precisely, the geometric and force and torque con-

straints from Eq. (10) imply that there are two types of
coordination numbers: (i) the geometrical coordination num-
ber z, parametrizing the free-volume function Eq. (73) as a
function of all contacting particles, constraining the position
of the particle via the hard-core geometrical interaction
Eq. (1). (ii) The mechanical coordination number Zm counting
only the geometrical contacts z that at the same time carry
nonzero force (Oron and Herrmann, 1998, 1999) and therefore
takes into account the force and torque balance conditions
Eqs. (2)–(7) via the isostatic condition.
From the definition we have z ≥ Zm since there could be a

geometric contact that constrains the motion of the particle but
carries no force. This distinction makes sense when there is
friction in the packing. For instance, imagine a frictionless
particle at the isostatic point z ¼ Zm ¼ 6 (although isostatic is
a global property). Now add friction to the interactions. The
mechanical coordination number can be as low as Zm ¼ 4, but

still z ¼ 6; the geometrical constraints are the same, only two
forces have been set to zero, allowing for tangential forces to
appear in the remaining four contacts.
For frictionless packings, we have z ¼ Zm. Furthermore, in

the limit of infinite compactivity, where the entropy of the
packings is maximum and therefore the packings are the most
probable to find in experiments, we see that again z ¼ Zm and
the distinction between mechanical and geometrical co-
ordination numbers disappears. In what follows, we consider
the consequences of considering the two coordination num-
bers only for the following 3D monodisperse system of
spheres. The distinction between z and Zm will allow us
to describe the phase diagram for all compactivities as in
Fig. 12(a). In the remaining sections where we treat non-
spherical particles and others, we will assume either friction-
less particles or packings at infinite compactivity for which we
simply set z ¼ Zm and get a single equation of state rather than
the yellow area in Fig. 12(a).
The mechanical coordination Zm defines isostatic packings,

which strictly applies only to the two limits Zm ¼ 2d ¼ 6 for
frictionless particles with friction μ → 0 and Zm ¼ dþ 1 ¼ 4

for infinitely rough particles μ → ∞. An important
assumption is that Zm varies continuously as a function of μ:

4 ≤ ZmðμÞ ≤ z ≤ 6: ð79Þ

In fact, a universal ZmðμÞ curve has been observed for a range
of different packing protocols (Song, Wang, and Makse, 2008)
and calculated analytically by Bo et al. (2014). The upper
bound of z is the frictionless isostatic limit. This effectively
excludes from the ensemble the partially crystalline packings,
which are characterized by larger z.
The remaining unknown is the density of states gðzÞ, which

can be determined using analogies with a quantum mechanical
system (see Appendix B) leading to (Song, Wang, and Makse,
2008; Wang et al., 2011)

gðzÞ ¼ ðhzÞz−D; ð80Þ

where D is the dimension per particle of the configuration
space and hz is a typical distance between jammed configu-
rations in this space. Note that the factor ðhzÞ−D will drop out
when performing ensemble averages. Physically, we expect
hz ≪ 1. The exact value of hz can be determined by a fitting of
the theoretical values to the simulation data, but it is not
important as long as we take the limit at the end hz → 0.
Having defined the jammed ensemble via the partition

functionZiso, we can calculate the ensemble averaged packing
density ϕðX; ZmÞ ¼ hϕðzÞi as

ϕðX; ZmÞ ¼
1

Ziso

Z
6

Zm

z

zþ 2
ffiffiffi
3

p e−2
ffiffi
3

p
=zXþz log hzdz: ð81Þ

Equation (81) gives predictions on the packing densities
as a function of X over the whole range of friction values
μ ∈ ½0;∞Þ since ZmðμÞ is determined by friction (Song,
Wang, and Makse, 2008). We can identify three distinct
regimes (see Fig. 12) as follows:

Baule et al.: Edwards statistical mechanics for jammed …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015006-28



(1) In the limit of vanishing compactivity (X → 0), only
the minimum volume at z ¼ 6 contributes. The density
is the rcp limit ϕrcp ¼ ϕðX ¼ 0; ZÞ:

ϕrcp¼
1

1þ1=
ffiffiffi
3

p ¼0.634…; ZmðμÞ∈ ½4;6�; ð82Þ

and the corresponding rcp free volume is

wrcp ¼
1ffiffiffi
3

p : ð83Þ

ϕrcp defines a vertical line in the phase diagram ending
at the J point: (0.634, 6). Here rcp is identified as the
ground state of the jammed ensemble with maximal
density and coordination number. Notice that this
result is also obtained from Eq. (75) at z ¼ 6.

(2) In the limit of infinite compactivity (X → ∞), the
Boltzmann factor exp½−2 ffiffiffi

3
p

=ðzXÞ� → 1 and the aver-
age in Eq. (81) is taken over all states with equal
probability. The X → ∞ limit defines the random loose
packing equation of state ϕrlpðZÞ¼ϕðX→∞;ZmÞ as a
function of Zm:

ϕrlpðZmÞ ¼
1

Zisoð∞; ZmÞ
Z

6

Zm

z

zþ 2
ffiffiffi
3

p ez lnhzdz

≈
Zm

Zm þ 2
ffiffiffi
3

p ; ZmðμÞ ∈ ½4; 6�: ð84Þ

The approximation comes from hz → 0. For small but
finite hz ≪ 1, an interesting regime appears of negative
compactivity (Briscoe et al., 2010), yet unstable,
leading to the limit of rlp when X → 0− which
has been termed as the random very loose packing

(Ciamarra and Coniglio, 2008). Thus, ϕrlp spans a
whole line in the phase diagram between the frictionless
value ϕrcp up to the limit μ → ∞ at

ϕmin
rlp ¼ 1

1þ ffiffiffi
3

p
=2

¼ 0.536…; for Zm ¼ 4: ð85Þ

The corresponding rlp free volume is wmin
rlp ¼ ffiffiffi

3
p

=2.
These values are interpreted as the minimal density
of mechanically stable sphere packings appearing at
Zm ¼ 4. We notice that Eq. (84) can be obtained from
the single particle Eq. (75), by setting z ¼ Zm. Indeed,
in the limit of infinite compactivity the mechanical
coordination takes the value of the geometrical one.

(3) Finite compactivity X defines the packings inside the
triangle bounded by the rcp and rlp lines and the limit
for isostaticity Zm ¼ 4 as μ → ∞ (granular line).
In this case, Eq. (81) can be solved numerically.
Figure 12(a) shows the lines of constant compactivity
plotted parametrically as a function of Zm.

Further thermodynamic characterization is obtained by
considering the entropy of the jammed configurations, which
can be identified by analogy with the equilibrium framework.
In equilibrium statistical mechanics we have F ¼ E − TS,
such that S ¼ E=T þ lnZ using the free energy expression
F ¼ −T lnZ (setting kB to unity). By analogy we obtain the
following entropy density of the jammed configuration
sðX; ZmÞ (entropy per particle) (Brujić et al., 2007; Briscoe
et al., 2008, 2010):

sðX; ZmÞ ¼ hWi=X þ lnZiso ð86Þ

substituting the partition function Eq. (78) in the last step. In
Fig. 12(b) each curve corresponds to a packing with a different
Zm value determined by Eq. (86). The projections sðϕÞ and

(a) (b)

FIG. 12. (a) Theoretical prediction of the statistical theory, Eq. (81). All disordered packings of spheres lie within the yellow triangle
demarcated by the rcp line at ϕrcp ¼ 0.634…, the rlp line parametrized by Eq. (84), and the lower limit for stable packings at Z ¼ 4

(granular line) for μ → ∞. Lines of constant finite compactivity X are in color. Packings are forbidden in the gray area. (b) Predictions of
the equation of state of jammed matter in the ðX;ϕ; sÞ space determined with Eq. (86). Each line corresponds to a different system with
ZmðμÞ as indicated. The projections in the ðϕ; sÞ and ðX; sÞ planes show that rcp (X ¼ 0) is less disordered than rlp (X → ∞). Adapted
from Song, Wang, and Makse, 2008.
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sðXÞ characterize the nature of randomness in the packings.
When comparing all the packings, the maximum entropy is at
ϕrlp for X → ∞, while the minimum entropy is at ϕrcp for
X → 0. Following the granular line in the phase diagram we
obtain the entropy for infinitely rough spheres showing a
larger entropy for the rlp than the rcp. The same conclusion is
obtained for the other packings at finite friction (4 < Zm < 6).
We conclude that the rlp states are more disordered than the
rcp states.
As stated, in the following results we always focus on

the X → ∞ regime, where the volume function that is
obtained from the solution of the self-consistent equation is
also the equation of state, since we simply have z → Zm for
X → ∞ when calculating the ensemble averaged packing
density [compare Eqs. (75) and (84)]. Therefore, we can
drop the distinction between Zm and z (for simplicity we
consider z), while keeping in mind that there exist further
packing states for finite X that are implied but not explicitly
discussed in the next sections (e.g., in the full phase
diagram of Fig. 20).

C. Packing of high-dimensional spheres

According to Eq. (53), the key quantity to exactly
calculate the average volume W̄ is the CDF P>ðr1;ΩÞ as
defined in Eq. (55). This CDF was approximated in the work
of Song, Wang, and Makse (2008) reviewed in Sec. IV.A by
using a simple one-dimensional gaslike model which is
analogous in 1D to a parking lot model (Rényi, 1958;
Palásti, 1960; Krapivsky and BenNaim, 1994; Tarjus and
Viot, 2004), leading to the exponential form (70). It turns out
that in the opposite limit of infinite dimensions (mean-field),
a closed form of P> can be obtained as well, based on
general considerations of correlations in liquid state theory.
In this mean-field high-d limit, the form obtained by Song,
Wang, and Makse (2008) can be determined as a limiting
case, with the added possibility to develop a systematic
expansion of P> in terms of pair distribution functions
allowing one to include higher-order correlations which
were neglected by Song, Wang, and Makse (2008).
Furthermore, the high-d limit is important to compare the
predictions of the Edwards ensemble to other mean-field
theories such as the RSB solution of hard-sphere packings
(Parisi and Zamponi, 2010).
In large dimensions, the effect of metastability between

amorphous and crystalline phases is strongly reduced, because
nucleation is increasingly suppressed for large d (Skoge et al.,
2006; van Meel et al., 2009; van Meel, Frenkel, and
Charbonneau, 2009). Moreover, mean-field theory becomes
exact for d → ∞, because each degree of freedom interacts
with a large number of neighbors (Parisi, 1988) opening up the
possibility for exact solutions.
In the following, we discuss the mean-field high-

dimensional limit of the coarse-grained Voronoi volume
theory starting from liquid state theory (Jin et al., 2010).
We sketch only the main steps in the calculation; for full
details see Jin et al. (2010). Assuming translational invariance
of the system, Eq. (55) can be rewritten as

P>ðr1;ΩÞ ¼ 1þ
XN−1

k¼1

ð−1Þk ρ
k

k!

×
Z
Ω
gkþ1ðr12;…; r1ðkþ1ÞÞdr1i;…; dr1ðkþ1Þ;

ð87Þ

where gn denotes the n-particle correlation function

gnðr12; r13;…; r1nÞ

¼ N!

ρnðN − nÞ!
Z

PNðrn; rN−nÞdrN−n; ð88Þ

with ρ ¼ N=V the particle density. The integrals in Eq. (87)
express the probabilities of finding a pair, triplet, etc., of
spheres within the volume Ω. For an exact calculation of P>,
we thus need the exact form of gnðr12; r13;…; r1nÞ to all
orders, which is not available. However, assuming the
generalized Kirkwood superposition approximation from
liquid theory (Kirkwood, 1935), we can approximate gn in
high dimensions by a simple factorized form (Jin et al., 2010):

gnðr12; r13;…; r1nÞ ≈
Yn
i¼2

g2ðr1iÞ; ð89Þ

where g2 is the pair correlation function.
Equation (89) indicates that spheres 2;…; n are correlated

with the central sphere 1 but not with each other, which is
reasonable for large d since the sphere surface is then large
compared with the occupied surface. Substituting Eq. (89)
into Eq. (87) yields

P>ðr1;ΩÞ ¼
XN−1

k¼0

ð−1Þk ρ
k

k!

�Z
Ω
g2ðrÞdr

�
k

¼ exp

�
−ρ

Z
Ω
g2ðrÞdr

�
; ð90Þ

in the limit N → ∞ (ρ → 1=W̄).
Thus, we see that calculating the CDF P> reduces to know

the form of the pair correlation function. Indeed, the expo-
nential form calculated in Sec. IV.A using a 1D model,
Eq. (70), is obtained from Eq. (90) by assuming the following
simplified pair correlation function [which was also consid-
ered by Torquato and Stillinger (2006)]:

g2ðrÞ ¼
z

ρSd−1
δðr − 2RÞ þ Θðr − 2RÞ: ð91Þ

The term Sd−1 in Eq. (91) denotes the surface of a d-
dimensional sphere with radius 2R. This form corresponds to
assuming a set of z contacting particles contributing to the
delta peak at 2R plus a set of uncorrelated bulk particles
contributing to a flat (gaslike) distribution characterized by the
Θ function. This form, depicted in Fig. 13, further assumes the
factorization of the contact and bulk distribution and repre-
sents the simplest form of the pair correlation function, yet it
gives rise to accurate results for the predicted packing
densities. The important point is that the high-d result,
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Eq. (90), allows one to express more accurate pair correlation
functions than Eq. (91) into the formalism to systematically
capture higher-order features in the correlations, thus allowing
for an improvement of the theoretical results. Such improve-
ments are treated in Secs. IV.D and IV.F.
Using Eq. (91) and the definition of Ω, Eq. (54), we see that

the volume integral
R
Ω g2ðrÞdr becomes

Z
Ω
g2ðrÞdr ¼

zS�ðcÞ
ρSd−1

þ V�ðcÞ; ð92Þ

where V� and S� are the Voronoi excluded volume and
surface, Eqs. (57) and (58), for general d. We thus recover
the same factorized form of the CDF as in 3D, Eq. (70), but
now generalized to any dimension d, separating bulk and
contact contributions

P>ðc; zÞ ¼ exp

�
−ρV�ðcÞ − zS�ðcÞ

Sd−1

�
; ð93Þ

whose validity should increase with increasing dimension.
The Voronoi excluded volume and surface V� and S� can be
calculated with Eqs. (57) and (58) for general d. The term
z=Sd−1 can be interpreted as the surface density σðzÞ in the 3D
theory.
The d-dimensional generalization of Eq. (53) is

W̄ ¼ VðdÞ
0 þ VðdÞ

0 d
Rd

Z
∞

R
dccd−1P>ðc; zÞ: ð94Þ

For large d an analytical solution of Eq. (94) can be obtained.

In terms of the free volume w ¼ ðW̄ − VðdÞ
0 Þ=VðdÞ

0 one obtains
the following asymptotic predictions of the Edwards ensemble
in high d (Jin et al., 2010): wEdw ¼ ð3=4dÞ2d, and the volume
fraction is

ϕEdw ¼ 4
3
d2−d: ð95Þ

The scaling ϕ ∼ d2−d is also found in other approaches for
jammed spheres in high dimensions. In principle, it satisfies
the Minkowski lower bound (Torquato and Stillinger, 2010):

ϕMink ¼
ζðdÞ
2

2−d; ð96Þ

where ζðdÞ is the Riemann zeta function, ζðdÞ ¼P∞
k¼1ð1=kdÞ, although this can be regarded as a minimal

requirement. Density functional theory predicts (Kirkpatrick
and Wolynes, 1987)

ϕdft ∼ 4.13d2−d: ð97Þ
Mode-coupling theory with a Gaussian correction predicts
(Kirkpatrick and Wolynes, 1987; Ikeda and Miyazaki, 2010)

ϕmct ∼ 8.26d2−d: ð98Þ

Replica symmetry breaking theory at the 1 step predicts (Parisi
and Zamponi, 2010)

ϕ1RSB
th ∼ 6.26d2−d; ð99Þ

and the full-RSB solution predicts (Charbonneau et al.,
2014b)

ϕfullRSB
th ∼ 6.85d2−d ð100Þ

as the lower limit of jamming in the J line, ϕj ∈ ½ϕth;ϕgcpÞ.
In general, we see that the Edwards prediction has the same

asymptotic dependence on d, Eq. (95), as the competing
theories. However, the prefactors are in disagreement, espe-
cially with the 1RSB calculation. While Edwards ensemble
predicts a prefactor 4=3, the 1RSB prediction is 6.26. A
comparison of the large d results for PB and PC with those in
3D indicates that the low d corrections are primarily manifest
in the expressions for particle density ρ and the surface density
σðzÞ ¼ z=Sd−1 (Jin et al., 2010). In 3D, the density exhibits
van der Waals-like corrections due to the particle volume
ρ → ~ρ ¼ 1=ðW̄ − V0Þ. Likewise, there are small corrections to
the surface density z=4π → hS�i−1 ≈ ðz=4πÞ ffiffiffi

3
p

. The origin of
the additional

ffiffiffi
3

p
factor is not clear. In 2D, further corrections

are needed to obtain agreement of the theory with simulation
data, a case that is treated next.

D. Packing of disks

The high-dimensional treatment discussed in the previous
section shows that improvements on the mean-field approach
of Song, Wang, and Makse (2008) can be achieved through
better approximations to the pair distribution function by
including neglected correlations between neighboring

FIG. 13. At the core of the mean-field approach developed by
Song, Wang, and Makse (2008) to calculate the volume fraction
of 3D packings is the approximation of the real pair correlation
function (dotted, green curve) with its characteristic peaks
indicating short-range correlations in the packing and the
power-law decay of the near contacting particles, Eq. (46), by
a simple delta function (black curve) at the contacting point plus a
flat distribution charactering a gaslike bulk of uncorrelated
particles. Surprisingly, such an approximation, which is expected
to work better at high dimensions than at low dimensions, gives
accurate results for the volume fraction in 3D, as shown in
Sec. IV.A. High-dimensional analyses allow one to treat higher-
order correlations neglected in Song, Wang, and Makse (2008) to
improve the theoretical predictions in a systematic way as shown
in Secs. IV.C, IV.D, and IV.F.
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particles. These correlations become crucial in low-
dimensional systems, in particular, in 2D systems of disk
packings. Interestingly, below we show that the 2D case
allows for a systematic improvement of the predictions based
on a systematic layer expansion of the pair distribution
function through a dimensional reduction of the problem to
a one-dimensional one, as treated next.
In principle, disordered packings of monodisperse disks are

difficult to investigate in 2D, since crystallization typically
prevents the formation of an amorphous jammed state.
Berryman (1983) estimated the density of jammed disks as
ϕrcp ¼ 0.82� 0.02 by extrapolating from the liquid phase.
Only recently, MRJ states of disks have been generated in
simulations using a linear programming algorithm (Torquato
and Jiao, 2010). These packings achieve a packing fraction of
ϕMRJ ¼ 0.826 including rattlers and exhibit an isostatic
jammed backbone (Atkinson, Stillinger, and Torquato,
2014). By comparison, the densest crystalline arrangement
of disks is a triangular lattice with ϕ ¼ π=

ffiffiffiffiffi
12

p
≈ 0.9069,

which was already proven by Thue (1892). For disordered
packings, replica theory predicts the J line in 2D from ϕth ¼
0.8165 to the maximum density of glass close packing at
ϕgcp ¼ 0.8745 (Parisi and Zamponi, 2010), although these
values have a large error bar due to the liquid theory
approximation used in the calculation. A recent theory based
on the geometric structure approach estimates ϕMRJ ¼ 0.834
(Tian et al., 2015).
In order to elucidate the 2D problem from the viewpoint of

the Edwards ensemble, one can adapt as a first approach the
same statistical theory developed for 3D spheres in Sec. IV.A
to the 2D case. This leads to a self-consistent equation for the
average Voronoi volume as in Eq. (53) (Meyer et al., 2010):

W̄ðzÞ ¼ V0 þ 2π

Z
∞

R
dccP>ðc; zÞ; ð101Þ

where P>ðc; zÞ has the form of Eq. (70) with V0 ¼ πR2 and
the 2D analogs of V� and S� are easily calculated. The surface
density σðzÞ follows from simulations of local configurations
via Eq. (67). In the relevant z range between the isostatic
frictionless value z ¼ 2d ¼ 4 and the lower limit z¼dþ1¼3

for frictional disks, σðzÞ is found to be approximately linear:
σðzÞ ¼ ðz − 0.5Þ=π for R ¼ 1=2 (Meyer et al., 2010).
Overall, such an implementation would predict a rcp

density of 2D frictionless disks of ϕrcp ≈ 0.89 greatly exceed-
ing the empirical values. The reasons for the discrepancy are
much stronger correlations between the contact and bulk
particles in low dimensions, such that the assumed independ-
ence of the CDFs PB and PC in Eq. (59) is no longer valid. A
phenomenological way to quantify the correlations by cou-
pling bulk and surface terms was discussed by Meyer et al.
(2010) leading to better agreement with simulation data.
A systematic way of dealing with the correlations can be

developed by focusing only on particles close to the direction ĉ,
i.e., particles that could contribute a VB, and then constructing
a layer expansion into coordination shells (Jin, Puckett, and
Makse, 2014). We denote these particles as Voronoi particles.
In the exact Eq. (55), one can then consider the exclusion
condition

Q
~n
i¼2 ½1 −mðri − r1;Ω� over ~n Voronoi particles

(including the reference particle) rather than all N particles
in the packing. In 2D, the Voronoi particles are located on the
two closest branches to the direction ĉ and can be described
by a correlation function of angles G ~nðα1; α2;…; αnÞ. Using
angles instead of the position coordinates is a suitable para-
metrization of the Voronoi particles provided the underlying
contact network is assumed fixed only allowing fluctuations in
the angles without destroying contacts. For such a fixed contact
network the degree of freedom per particle is thus reduced
by 1 and allows one to map the ~n − 1 position vectors
r12; r13;…; r1~n onto the angles α1; α2;…; αn of contacting
Voronoi particles plus the angle β describing the direction ĉ (see
Fig. 14). This requires ~n − 1 ¼ nþ 1. Transforming variables
from ðr12; r13;…; r1~nÞ to ðβ; α1; α2;…; αnÞ in Eq. (55) leads to
(Jin, Puckett, and Makse, 2014)

P>ðcÞ ¼ lim
n→∞

C0
Z

� � �
Z

Θðα1 − βÞGnðα1;…; αnÞ

×
Ynþ2

j¼2

Θ
�

r1j
2ĉ · r̂1j

− c

�
dβdα1;…; dαn; ð102Þ

"*$ "4$

(c)

(a) (b)

FIG. 14. (a) An illustration of the geometrical quantities used in
the calculation of P>, Eq. (102). The αj are the angles between
any two Voronoi particles for a given ŝ. (b) Mapping mono-
disperse contact disks to 1D rods. The 2D exclusive angle α
corresponds to the 1D gap. (c) Phase diagram of 2D packings.
Theoretical results for n ¼ 1, 2, and 3 (line points, from left to
right) and ϕ∞

rcp (red) are compared to (i) values in the literature:
Berryman (1983) (down triangle), Parisi and Zamponi (2010)
(diamond), and O’Hern et al. (2002) (up triangle), (ii) simulations
of 104 monodisperse disks (crosses), and polydisperse disks
(pluses), and (iii) experimental data of frictional disks (square).
Inset: The theoretical rcp volume fraction ϕrcpðnÞ as a function of
n. The points are fitted to a function ϕðnÞ ¼ ϕ∞

rcp − k1e−k2n,
where k1¼0.34�0.02, k2¼0.67�0.06, and ϕ∞

rcp¼0.85�0.01.
Adapted from Jin, Puckett, and Makse, 2014.
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where the constant C0 ¼ z=L with L ¼ 2π ensures the nor-
malization P>ðRÞ ¼ 1. Equation (102) becomes exact as
n → ∞ and provides a systematic approximation for finite
n. In particular, n can be related to the coordination layers
above and below ĉ.
One can then make two key assumptions to make this

approach tractable (Jin, Puckett, and Makse, 2014). First, one
applies the Kirkwood superposition approximation as in the
high-dimensional case for Gn: Gnðα1;…; αnÞ ≈

Q
n
j¼1 GðαjÞ.

Second, the system of contacting Voronoi particles is mapped
onto a system of 1D interacting hard rods with an effective
potential VðxÞ; see Fig. 14. Considering the particles in the
first coordination shell [Fig. 14(b)] leads to a set of z rods
at positions xi, i ¼ 1;…; z, where the rods are of length
l0 ¼ π=3 and the system size is L ¼ 6l0 with periodic
boundary conditions. In addition, the local jamming condition
requires that each particle has at least dþ 1 contacting
neighbors, which cannot all be in the same “hemisphere.”
In 2D, this implies that z ≥ 3 and αj ≤ π. In the rod system,
this constraint induces an upper limit 3l0 on possible rod
separations. Thus, the jamming condition is equivalent to
introducing an infinite square-well potential of width a
between two hard rods. Crucially, the partition function
QðL; zÞ can then be calculated exactly in 1D (Jin, Puckett,
and Makse, 2014):

QðL; zÞ ¼
X⌊L=l0−z2

⌋

k¼0

ð−1Þk
�
z
k

� ½L=l0 − z − 2k�z−1
ðz − 1Þ!

× ΘðL=l0 − zÞΘð3z − L=l0Þ; ð103Þ
where ⌊x⌋ is the integer part of x and the inverse temper-
ature has been set to unity since it is irrelevant. This allows
one to determine the distribution of angles (gaps) GðαÞ ¼
hδðx2 − x1 − αÞi:

GðαÞ ¼ Qðα; 1ÞQðL − α; z − 1Þ
QðL; zÞ : ð104Þ

In the limit a → ∞ the system becomes the classical Tonks
gas of 1D hard rods (Tonks, 1936). In the thermodynamic
limit (L → ∞ and z → ∞), the gap distribution is GHRðαÞ ¼
ρfe−ρf ðα=l0−1Þ, where ρf ¼ z=ðL=l0 − zÞ is the free density.
The density of 2D disk packings follows by solving

Eq. (101) with Eqs. (102) and (104) numerically using the
Monte Carlo method [Fig. 14(c)]. The formalism reproduces
the highest density of 2D spheres in a triangular lattice at
ϕ ≈ 0.91 for z ¼ 6. For disordered packings one obtains the
rcp volume fraction:

ϕ2d
rcp ¼ 0.85� 0.01; for z ¼ 4; ð105Þ

and the rlp volume fraction as

ϕ2d
rlp ¼ 0.67� 0.01; for z ¼ 3: ð106Þ

We see that the prediction of the frictionless rcp point is close
to the numerical results and the result of the 1RSB theory
ϕth ¼ 0.8165, while a new prediction of rlp at the infinite
friction limit is obtained.

E. Packing of bidisperse spheres

Polydispersity with a smooth distribution of sizes typically
occurs in industrial particle synthesis and thus affects pack-
ings in many applications. Qualitatively, one expects an
increase in packing densities due to size variations: the smaller
particles can fill those voids that are not accessible by the
larger particles leading to more efficient packing arrange-
ments, which is indeed observed empirically (Sohn and
Moreland, 1968; Santiso and Müller, 2002; Brouwers,
2006; Desmond and Weeks, 2014). Simulations have shown
that the jamming density in polydisperse systems depends also
on the compression rate without crystallization (Hermes and
Dijkstra, 2010) and the skewness of the size distribution
(Desmond and Weeks, 2014). Since these issues are important
in technological applications, as for instance the proportioning
of concrete, very efficient phenomenological models have
been developed to predict volume fractions of mixtures of
various types of grains (de Larrard, 1999). For size distribu-
tions following a power law, space-filling packings can be
constructed (Herrmann, Mantica, and Bessis, 1990). On the
theoretical side, a “granocentric” model has been shown to
reproduce the packing characteristics of polydisperse emul-
sion droplets (Clusel et al., 2009; Corwin et al., 2010; Jorjadze
et al., 2011; Newhall et al., 2011; Puckett, Lechenault, and
Daniels, 2011). Here the packing generation is modeled as a
random walk in the first coordination shell with only two
parameters, the available solid angle around each particle and
the ratio of contacts to neighbors, which can both be calibrated
to experimental data.
The simpler case of a bidisperse packing with two types

of spheres with different radii has been investigated by Clarke
and Wiley, 1987; Santiso and Müller, 2002; de Lange
Kristiansen, Wouterse, and Philipse, 2005; Hopkins,
Stillinger, and Torquato, 2013) using simulations. Here one
can generally observe packing densities that increase from the
monodisperse value as both the size ratio and concentration
of small spheres is varied. Hopkins, Stillinger, and Torquato
(2013) generated mechanically stable packings with a large
range of densities 0.634 ≤ ϕ ≤ 0.829 using a linear program-
ming algorithm. Interestingly, for a given size ratio, the
density is nonmonotonic, exhibiting a peak at a specific
concentration. A theoretical approach that is able to reproduce
the density peak in the bidisperse case was developed by
Danisch, Jin, and Makse (2010) based on the volume
ensemble. The key idea is to treat the spheres of radii
R1 < R2 as different species 1 and 2 with independent
statistical properties. If we denote by x1 the fraction of small
spheres 1, then x1 ¼ N1=ðN1 þ N2Þ, with Ni the number of
spheres i in the packing. Likewise, x2 ¼ 1 − x1. The overall
packing density is

ϕ ¼ V̄g

W̄
; V̄g ¼

X2
i¼1

xiV
ðiÞ
g ; ð107Þ

where VðiÞ
g ¼ ð4π=3ÞR3

i and W̄ is the average volume of a
Voronoi cell as before. The average now includes averaging
over the different species, so that

Baule et al.: Edwards statistical mechanics for jammed …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015006-33



W̄ ¼
X2
i¼1

xiW̄i; ð108Þ

W̄i ¼ VðiÞ
g þ 4π

Z
∞

Ri

dcc2PðiÞ
> ðc; zÞ; i ¼ 1; 2 ð109Þ

as a straightforward extension of Eq. (53). The CDF PðiÞ
> ðc; zÞ

contains the probability that, for a Voronoi cell of species i, the
boundary is found at a value larger than c. This probability
depends, of course, on both species. Assuming statistical
independence we can introduce a factorization into bulk and
contact particles of both species (Danisch, Jin, and Makse,
2010) analogously to the monodisperse case Eq. (59):

PðiÞ
> ðc; zÞ ¼ Pði1Þ

B ðcÞPði1Þ
C ðc; zÞPði2Þ

B ðcÞPði2Þ
C ðc; zÞ: ð110Þ

Here PðijÞ
B denotes the CDF due to contributions of bulk

particles of species j to a Voronoi cell of species i. Likewise

PðijÞ
C refers to the contact particles. We express each of

these terms in analogy to the monodisperse case, i.e.,
Eqs. (63) and (65),

PðijÞ
B ¼ exp ½−~ρjV�

ijðcÞ�; ð111Þ

PðijÞ
C ¼ exp ½−σijðzÞS�ijðcÞ�: ð112Þ

The Voronoi excluded volume and surface V�
ij and S�ij are

defined by Eqs. (57) and (58), where now sðr; ĉÞ denotes the
VB between spheres of radii Ri and Rj, as parametrized by
Eq. (22). The particle densities ~ρj are given by

~ρj ¼
xj

W̄ − V̄g
; j ¼ 1; 2: ð113Þ

The main challenge is to obtain an expression for the surface
density σijðzÞ. For this, it is first necessary to distinguish
different average contact numbers: zij is the average number of
spheres j in contact with a sphere i. It follows that the average
number of contacts of sphere i, denoted by zi, is

zi ¼ zi1 þ zi2; z ¼
X2
i¼1

xizi: ð114Þ

By relating the contact numbers zi to the average occupied
surface on sphere i, hSocci i, one can obtain the following
equations to relate zij with z:

z1 ¼
z

x1 þ x2hSocc1 i=hSocc2 i ;

z2 ¼
z

x1hSocc2 i=hSocc1 i þ x2
; ð115Þ

and

z11 ¼
z21x1
z

; z12 ¼
z1z2x2

z
; ð116Þ

z21 ¼
z1z2x1

z
; z22 ¼

z22x2
z

; ð117Þ

where hSocci i is approximated as hSocci i ¼ P
2
j¼1 xjS

occ
ij with the

exact expression for the occupied surface [see Fig. 15(a)]

Soccij ¼ 2π

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Rj

Ri þ Rj

�
2

s #
: ð118Þ

Equations (115)–(117) imply that we can express zij as a
function of z: zij ¼ zijðzÞ. As before, σij can in principle be
obtained from simulations using Eq. (67). However, a direct
simulation of hS�iji as a function of z contacting particles
ignores the dependence of the different species that is not
resolved in z. Therefore, ~σij is introduced via

σijðzÞ ¼ ~σij(zijðzÞ): ð119Þ

In turn, we obtain ~σij ¼ hS�iji−1 as a function of zij by
generating configurations around sphere i with the proportions
zi1=zi of spheres 1 and zi2=zi of spheres 2. hS�iji follows
operationally again as the Monte Carlo average, Eq. (68).
Overall, the packing density of the bidisperse packing

of spheres can be calculated by solving the following self-
consistent equation for the free volume w ¼ W̄ − V̄g:

w¼4π
X2
i¼1

xi

Z
∞

Ri

dcc2 exp



−
X2
j¼1

�
xj
w
V�
ijðcÞþσijðzÞS�ijðcÞ

��
:

ð120Þ

We notice that Eq. (120) is the generalization of Eq. (71)
from monodisperse to bidisperse packings. While the mono-
disperse self-consistent equation (71) admits a closed ana-
lytical solution, the bidisperse equation (120) does not. Thus,
we resort to a numerical solution of this equation, and
therefore the equation of state wðzÞ is obtained numerically
in these cases rather than in closed form as obtained for
monodisperse spheres, Eq. (73).
Calculations for all systems (from spheres to nonspheres,

monodisperse or polydisperse and beyond) that use the
present mean-field theory in the Edwards ensemble will

(b)(a)
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φ

FIG. 15. (a) The occupied surface, Eq. (118), and the Voronoi
excluded surface S�ij. (b) Comparison between theory and
numerical simulations of Hertzian packings at rcp vs the con-
centration x of small spheres. Different symbols denote different
ratios R1=R2. Adapted from Danisch, Jin, and Makse, 2010.
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end up with a self-consistent equation for the free volume of
the form Eqs. (71) or (120). However, so far, the only self-
consistent equation that admits a closed analytical solution is
the 3D monodisperse case leading to Eq. (73). The remaining
equations of state for all systems studied so far are too
involved and need to be solved numerically.
Results of numerical solutions of Eq. (120) with the

isostatic value z ¼ 6 are shown in Fig. 15(b) demonstrating
good agreement with simulation data as well as the predictions
of the 1RSB hard-sphere glass calculations (Biazzo et al.,
2009). We observe the pronounced peak as a function of the
species concentration x ¼ x1 ∈ ½0; 1�. The extension of the
theory to higher-order mixtures is straightforward in principle.
The main challenge is to obtain the generalizations of
Eqs. (115), (116), and (117). Determining ~σijðzijÞ from
simulations of local packing configurations also becomes
an increasingly complex task.

F. Packing of attractive colloids

Packings of particles with diameters of around 10 μm or
smaller enter the domain of colloids and are often dominated
by adhesive van der Waals forces in addition to friction and
hard-core interactions. In fact, packings of adhesive colloidal
particles appear in many areas of engineering as well as
biological systems (Jorjadze et al., 2011; Marshall and Li,
2014) and exhibit different macroscopic structural properties
compared with nonadhesive packings of large grains treated
so far, where attractive van der Waals forces are negligible in
comparison with gravity. Lois, Blawzdziewicz, and O’Hern
(2008) studied the mechanical response at the jamming
transition, where two second-order transitions were found
in the attractive systems (Lois, Blawzdziewicz, and O’Hern,
2008): a connectivity percolation transition and a rigidity
percolation transition, where a rigid backbone forms without
floppy modes.
Numerical studies of adhesive granular systems have found

a range of packing fractions as a function of particle sizes
ϕ ≈ 0.1–0.6 (Yang, Zou, and Yu, 2000; Valverde, Quintanilla,
and Castellanos, 2004; Blum et al., 2006; Head, 2007; Martin
and Bordia, 2008; Kadau and Herrmann, 2011; Parteli et al.,
2014). The effect of varying the force of adhesion was
systematically investigated by Liu et al. (2015, 2017) and
Chen et al. (2016) using a discrete element method (DEM)
specifically developed for the ballistic deposition of adhesive
Brownian soft spheres with sliding, twisting, and rolling
friction (Marshall and Li, 2014). A dimensionless adhesion
parameter Ad, defined as the ratio between interparticle
adhesion work and particle inertia (Li and Marshall, 2007),
can be used to quantify the combined effect of size and
deposition velocity. In the case of Ad < 1, particle inertia
dominates the adhesion and frictions exhibiting a broad range
of densities and coordination numbers. At Ad ≈ 1 the isostatic
value z ¼ 4 for infinitely rough spheres is observed, indicating
that weak adhesion has a similar effect on the packing as
strong friction. However, when Ad > 1, an adhesion-con-
trolled regime is observed with a unique curve in the z–ϕ
diagram. The lowest packing density achieved numerically is
ϕ ¼ 0.154 with z ¼ 2.25 for Ad ≈ 48. The lowest density
agrees well with the data from a random ballistic deposition

experiment (Blum et al., 2006) and other DEM simulations
(Yang, Zou, and Yu, 2000; Parteli et al., 2014).
An analytical representation of the adhesive equation of

state can be derived within the framework of the mean-field
Edwards volume function, Eq. (53), where the CDF P> is
defined by Eq. (55). Assuming the same factorization of the
n-point correlation function as in high dimensions leads to
the approximation, Eq. (90), which allows us to relate P> with
the structural properties of the packing expressed in the pair
distribution function g2. We then model g2 by extending the
simple form considered so far for 3D hard spheres in Eq. (91)
in terms of four distinct contributions following the results of
available simulations of hard-sphere packings and metastable
hard-sphere glasses. We consider the following (Liu et
al., 2015):

(i) A delta peak due to contacting particles (Donev,
Torquato, and Stillinger, 2005b; Torquato and
Stillinger, 2006; Song, Wang, and Makse, 2008).

(ii) A power-law peak as given by Eq. (46) over a range
ϵ due to near contacting particles (Donev, Torquato,
and Stillinger, 2005b; Wyart, 2012).

(iii) A step function due to bulk particles (Torquato
and Stillinger, 2006; Song, Wang, and Makse,
2008) mimicking a uniform density of bulk particles.

(iv) A gap of width b separating bulk and (near)
contacting particles. This gap captures the effect
of correlations due to adhesion and is assumed to
depend on z: b ¼ bðzÞ. In this way we model the
increased porosity at a given z compared with
adhesionless packings. Overall, we obtain

g2ðr; zÞ ¼
z
ρλ

δðr− 2RÞ þ σðr− 2RÞ−νΘð2Rþ ϵ− rÞ

þΘ(r− ½2Rþ bðzÞ�): ð121Þ

For the power-law term we assume ν ¼ 0.38 from Lerner,
During, and Wyart (2013) and a width of ϵ ¼ 0.1R, which is
approximately the range over which the peak decreases to
the bulk value unity as observed by Donev, Torquato, and
Stillinger (2005b). The value σ is then fixed by continuity with
the step function term in the absence of a gap.
Next we determine the gap width function bðzÞ which is the

crucial assumption of the theory. bðzÞ needs to satisfy a set
of constraints that we impose purely on physical grounds (Liu
et al., 2015).

(i) bðzÞ is a smooth monotonically decreasing function
of z. Here the physical picture is that for small z
(corresponding to looser packings), the gap width is
larger due to the increased porosity of the packing.

(ii) At the isostatic limit z ¼ 6, the gap disappears,
bð6Þ ¼ ϵ, and we expect to recover the frictionless
rcp value, since this value of z represents a max-
imally dense disordered packing of spheres. We
obtain from Eq. (121) indeed the prediction for
ϕEdw, Eq. (82), by choosing an appropriate value of λ
and accounting for low-dimensional corrections
due to the hard-core excluded volume of the refer-
ence sphere, such that ρ → ρ̄ ¼ 1=ðW̄ − V0Þ. This
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constraint thus fixes ρ and λ, as well as one of the
parameters in bðZÞ.

(iii) In addition, we conjecture the existence of an
asymptotic adhesive loose packing (ALP) at z ¼ 2

and ϕ ¼ 1=23 which yields bð2Þ ¼ 1.47 and fixes a
second parameter in bðzÞ. This is motivated by the
fact that ϕ ¼ 1=2d is the lower bound density of
saturated sphere packings of congruent spheres in d
dimensions for all d (Torquato and Stillinger, 2006).
A saturated packing of congruent spheres of a unit
diameter satisfies the fact that each point in space
lies within a unit distance from the center of some
sphere. Moreover, z ¼ 2 is the lowest possible value
for a physical packing: If z < 2 there are more
spheres with a single contact (i.e., dimers) than with
three or more contacts, which identifies that the ALP
point is asymptotic only.

Clearly, bðzÞ is a smoothly decreasing function, so that we
can assume, e.g., the simple parametric form bðzÞ ¼ c1þ
c2e−c3z, such that one fitting parameter is left after the two
constraints bð6Þ ¼ ϵ and bð2Þ ¼ 1.47 are imposed. Figure 16
highlights the fact that the exponential decay of bðzÞ
provides an excellent fit to the simulation data providing
the equation of state ϕðzÞ for adhesive packings. Moreover,
the resulting Pðc; zÞ also agrees well with the empirically
measured CDF over a large range of Ad values (Liu et al.,
2015). This means that including bðzÞ captures well the
essential structural features of the packing. It is quite
intriguing that such a simple modification of the non-
adhesive theory, motivated on physical grounds, leads to
such good agreement not only in the low density regime,
but also for mid to high densities.
These results highlight the fact that attraction in (spherical)

particles leads to a lower density limit for percolation at the
ALP with ϕc ¼ 1=23. The equivalent ϕc in attractive colloids
is observed empirically over a range of densities ϕc ≈ 0.1–0.2
depending on the mechanism for the suppression of phase
separation (Zaccarelli, 2007), e.g., due to an interrupted
liquid-gas phase separation (Trappe et al., 2001; Lu et al.,
2008). The situation is thus reminiscent of the adhesionless

and frictionless range of densities ϕ ∈ ½ϕth;ϕgcp� of the J line
(see Secs. III.A.4 and V).

G. Packing of nonspherical particles

The question of optimizing the density of packings made of
particles of a particular shape is an outstanding scientific
problem occupying scientists since the time of Apollonius of
Perga (Thomas, 1941; Herrmann, Mantica, and Bessis, 1990;
Andrade et al., 2005) and Kepler (Kepler, 1611; Weaire and
Aste, 2008), and still of great practical importance for all
industries involved in granular processing. In addition, the
complex structures that result from their assembly become
increasingly important for the design of new functional
materials (Glotzer and Solomon, 2007; Damasceno, Engel,
and Glotzer, 2012; Baule and Makse, 2014; Jaeger, 2015).
In the absence of theory, searches for the optimal random

packing of nonspherical shapes have focused on empirical
studies on a case-by-case basis. Table V presents an overview
of the maximal packing densities for a variety of shapes
obtained in simulations, experiments, and theory. Recent
simulations have found the densest random packing fraction
of, e.g., prolate ellipsoids at ϕ ≈ 0.735 (Donev et al., 2004),
spherocylinders at ϕ ≈ 0.722 (Zhao et al., 2012), and 2D
dimers at ϕ ≈ 0.885 (Schreck, Xu, and O’Hern, 2010). The
densest random tetrahedra packing has been found in simu-
lations with ϕ ¼ 0.7858 (Haji-Akbari et al., 2009). More
systematic investigations of the self-assembly of hard trun-
cated polyhedra families have been done by Damasceno,
Engel, and Glotzer (2012) and Chen et al. (2014). The
organizing principles of ordered packings of Platonic and
Archimedean solids and other convex and nonconvex shapes
were investigated by Torquato and Jiao (2009, 2012).
Interesting shapes have been considered also in a systematic
way: superellipsoids (Delaney and Cleary, 2010), superballs
(Jiao, Stillinger, and Torquato, 2010), puffy tetrahedra (Kallus
and Elser, 2011), polygons (Wang, Dong, and Yu, 2015), and
truncated vertices (Damasceno, Engel, and Glotzer, 2012;
Gantapara et al., 2013). A caveat of some empirical studies is
the strong protocol dependence of the final close-packed state
even for the same shape: recent studies of, e.g., spherocylinder
packings exhibit a large variance depending on the algorithm
used (Abreu, Tavares, and Castier, 2003; Williams and
Philipse, 2003; Jia et al., 2007; Bargiel, 2008; Wouterse,
Luding, and Philipse, 2009; Lu et al., 2010; Kyrylyuk et al.,
2011; Zhao et al., 2012). Generic theoretical insight is needed
if one wants to search over more extended regions of
parameter space of object shapes.
It is empirically clear that nonspherical shapes can gen-

erally achieve denser maximal packing densities than spheres.
In fact, a conjecture attributed to Ulam [recorded in the book
by Gardner (2001)] in the context of regular packings, recently
also formulated for random packings (Jiao and Torquato,
2011), states that the sphere is, indeed, the worst packing
object among all convex shapes. Kallus (2016) showed for
random packings that all sufficiently spherical shapes pack
more densely than spheres. However, one should notice the
local character of such a conjecture for random packings:
Onsager already proved that elongated spaghettilike thin rods
pack randomly much worse than spheres (Onsager, 1949).

FIG. 16. High Ad simulation data in the z–ϕ plane. The
adhesive continuation with an exponential bðzÞ connects the
RCP at ϕEdw and z ¼ 6 with the conjectured adhesive loose
packing point (ALP) at ϕ ¼ 2−3 and z ¼ 2. The black solid line is
the RLP line of Fig. 12(b). Adapted from Liu et al., 2015.
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From a numerical point of view, a promising approach to
find the best shape was put forward by Jaeger and collabo-
rators (Miskin and Jaeger, 2013, 2014; Jaeger, 2015; Roth and
Jaeger, 2016) who used genetic algorithms (GA) to map the
possible space of the constitutive particle shapes. They
consider nonspherical composite particles formed by gluing
spherical particles of different sizes rigidly connected into a
polymerlike nonbranched shape. A genetic algorithm starts
with a given shape and performs “mutations” to the con-
stitutive particles until a desired property, for instance,
maximal strength or maximal packing fraction is achieved.
This reverse-engineering approach can generate novel materi-
als with desired properties but of limited shapes: within this
framework, the limits to granular materials design are the
limits to computation (Jaeger, 2015), since GA heavily relies
on dynamically simulating (e.g., with MD or MC) the
packings to be optimized. Thus, computational limitations
are expected in more complicated shapes such as tetrahedra or
irregular polyhedra in general.
On the theoretical side, there are successful theories of high

density liquids that have been extended to encompass non-
spherical particles, such as mode-coupling theory (Götze,
2009) and density functional theory (Hansen-Goos and
Mecke, 2009, 2010; Marechal and Löwen, 2013). However,
they do not apply to the jamming regime. On the other hand,
successful approaches to jamming based on replica theory
so far apply only to spherical particles (Parisi and Zamponi,
2010; Charbonneau et al., 2017); see Sec. V. The difficulty to

extend replica theory calculations from spheres to nonspheri-
cal particles stems from the fact that the system is not
rotationally invariant, which adds more degrees of freedom
to the description of the cage motion. Replica calculations also
rely on liquid equations of state, which are typically not
available in analytical form for nonspherical particles. These
difficulties can be overcome in principle with numerics, but
this is most likely cumbersome and has not been accomplished
so far. On the other hand, the Edwards approach can be
generalized theoretically much more easily to nonspherical
shapes.
The advantage of the mean-field Edwards approach is that it

is based entirely on the geometry of the particles; its building
block is directly the shape of the constitutive particle.
Therefore, Edwards ensemble can be applied in a straightfor-
ward way to arbitrary shapes. Such a generalization, providing
a comprehensive framework to describe packings of non-
spherical particles, was recently developed (Baule et al.,
2013). A drawback of employing a general theoretical
approach rather than direct simulations using, e.g., artificial
evolution (Jaeger, 2015) is that current theories are at the
mean-field level and thus only approximate. However, both
approaches can be complementing: a mean-field theory could
identify a reduced region in the space of optimal parameters,
which can then be tackled with more detail using more
focused reverse-engineering techniques.
As discussed in the previous sections, the central quantity to

calculate is the average Voronoi volume W̄ as a function of z.

TABLE V. Overview of maximal packing fractions ϕmax for a selection of regular shapes in disordered packings obtained with a variety of
different packing protocols. Note that the ϕmax value is achieved for the aspect ratio, where ϕ is maximal, so every value is at a different aspect
ratio.

Shape ϕmax simulation ϕmax experiment ϕmax theory

Disks (2D) 0.826 (Atkinson, Stillinger, and
Torquato, 2014)

0.85 (Jin, Puckett, and Makse, 2014)

0.874 (Parisi and Zamponi, 2010)
0.834 (Tian et al., 2015)

Sphere 0.645 (Skoge et al., 2006) 0.64 (Bernal and Mason, 1960) 0.634 (Song, Wang, and Makse,
2008)

0.68 (Parisi and Zamponi, 2010)

M&M candy 0.665 (Donev et al., 2004)
Dimer 0.703 (Faure, Lefebvre-Lepot,

and Semin, 2009)
0.707 (Baule et al., 2013)

Ellipse (2D) 0.895 (Delaney et al., 2005)
Oblate ellipsoid 0.707 (Donev et al., 2004)
Prolate ellipsoid 0.716 (Donev et al., 2004)
Spherocylinder 0.722 (Zhao et al., 2012) 0.731 (Baule et al., 2013)
Lens-shaped

particle
0.736 (Baule et al., 2013)

Tetrahedron 0.7858 (Haji-Akbari et al., 2009) 0.76 (Jaoshvili et al., 2010)
Cube 0.67 (Baker and Kudrolli, 2010)
Octahedron 0.697 (Jiao and Torquato, 2011) 0.64 (Baker and Kudrolli, 2010)
Dodecahedron 0.716 (Jiao and Torquato, 2011) 0.63 (Baker and Kudrolli, 2010)
Icosahedron 0.707 (Jiao and Torquato, 2011) 0.59 (Baker and Kudrolli, 2010)

General ellipsoid 0.735 (Donev et al., 2004) 0.74 (Man et al., 2005)
Superellipsoid 0.758 (Delaney and Cleary, 2010)
Superball 0.674 (Jiao, Stillinger,

and Torquato, 2010)
Trimer 0.729 (Roth and Jaeger, 2016)
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In the case of frictionless spheres, z is fixed by isostaticity
providing the prediction Eq. (82) for rcp. The situation is
somewhat more complicated for frictionless nonspherical
particles: here both z and W̄ depend independently on the
particle shape. For simplicity, we assume rotationally sym-
metric particles in the following, where deviations from the
sphere can be parametrized by a single parameter, e.g., the
aspect ratio αmeasuring length over width. As a consequence,
if we are interested in obtaining the function ϕðαÞ at rcp, we
need to combine the dependences W̄αðzÞ and zðαÞ:

ϕðαÞ ¼ V0

W̄α(zðαÞ)
: ð122Þ

We discuss next how to obtain W̄αðzÞ by extending the
framework of the coarse-grained Voronoi volume to non-
spherical particles. A quantitative approach to describe zðαÞ
is discussed in Sec. IV.G.3, which requires a quantitative
evaluation of the occurrence of degenerate configurations.

1. Coarse-grained Voronoi volume of nonspherical shapes

The key for the mean-field approach to the statistical
mechanical ensemble based on the coarse-grained volume
function is Eq. (52), which replaces the exact global mini-
mization to obtain the Voronoi boundary liðĉÞ in the direction
ĉ by the PDF pðc; zÞ. For a general particle shape the cutoff c�
describes the particle surface parametrized by ĉ. Transforming
Eq. (52) to the CDF P> using pðc; zÞ ¼ −ðd=dcÞP>ðc; zÞ
leads to the volume integral (Baule et al., 2013)

W̄ðzÞ ¼
Z

dcP>ðc; zÞ; ð123Þ

where P> is again interpreted as the probability that N − 1
particles are outside a volumeΩ centered at c, since otherwise
they would contribute a shorter VB. Ω is in principle defined
as in Eq. (54), but is no longer a spherical volume due to the
nonspherical interactions manifest in the parametrization of
the VB. The VB now also depends on the relative orientation t̂
of the two particles suggesting the following definition:

Ωðc; t̂Þ ¼
Z

drΘ(c − sðr; t̂; ĉÞ)Θ(sðr; t̂; ĉÞ); ð124Þ

for a fixed relative orientation t̂.
Thus far the description of W̄ is exact within the statistical

mechanical approach. In order to solve the formalism, we
introduce the following mean-field minimal model of the
translational and orientational correlations in the packing
(Baule et al., 2013):

(1) Following Onsager (1949), we treat particles of differ-
ent orientations as belonging to different species. This
is the key assumption to treat orientational correlations
within a mean-field approach. Thus, the problem for
nonspherical particles can be mapped to that of
polydisperse spheres for which P> factorizes into
the contributions of the different radii (see Sec. IV.E).

(2) Translational correlations are treated as in the spherical
case for high dimensions (see Sec. IV.C). Here the
Kirkwood superposition approximation leads to a
factorization of the n-point correlation function into

a product of pair correlation functions, Eq. (89).
Including also the factorization of orientations pro-
vides the form

P>ðc; zÞ ¼ exp



−ρ

Z
dt̂

Z
Ωðc;t̂Þ

dr g2ðr; t̂Þ
�
: ð125Þ

(3) The pair correlation function is modeled by a delta
function plus step function as for spheres, Eq. (91).
This form captures the contacting particles and treats
the remaining particles as an ideal gaslike background:

g2ðr; t̂Þ ¼
1

4π

�
σðzÞ
ρ

δ(r − r�ðr̂; t̂Þ)

þΘ(r − r�ðr̂; t̂Þ)
�
: ð126Þ

Here the prefactor 1=4π describes the density of
orientations, which we assume isotropic. The contact
radius r� denotes the value of r in a direction r̂ for
which two particles are in contact without overlap. In
the case of equal spheres the contact radius is simply
r�ðr̂; t̂Þ ¼ 2R. For nonspherical objects, r� depends on
the object shape and the relative orientation.

Combining Eq. (126) with Eq. (125) recovers the following
product form of the CDF P>:

P>ðc; zÞ ¼ exp f−ρV̄�ðcÞ − σðzÞS̄�ðcÞg; ð127Þ

where V̄� and S̄� are now orientationally averaged excluded
volume and surface: V̄� ¼hΩ−Ω∩Vexit̂ and S̄� ¼h∂Vex∩Ωit̂
[cf. Eqs. (57) and (58)]. The orientational average is defined
as h� � �it̂ ¼ ð1=4πÞ H � � � dt̂. Substituting Eq. (127) into
Eq. (123) leads to a self-consistent equation for W̄ due to
the dependence of ρ on W̄. In order to be consistent with the
spherical limit, we use ρ → ~ρ ¼ 1=ðW̄ − V0Þ due to the low-
dimensional corrections discussed in Sec. IV.A.
In accordance with the treatment of the surface density term

σðzÞ for 3D spheres, we obtain σðzÞ by simulating random
local configurations of z contacting particles around a refer-
ence particle and determining the average available free
surface. This surface is given by S̄�ðcmÞ, where cm is the
minimal contributed VB among the z contacts in the direction
ĉ. Averaging over many realizations with a uniform distri-
bution of orientations and averaging also over all directions ĉ
provides the surface density in the form of a Monte Carlo
average σðzÞ ¼ ⟪S̄�ðcmÞ⟫−1

ĉ . In this way we can calculate
σðzÞ only for integer values of z. For fractional z that are
predicted from the evaluation of degenerate configurations in
the Sec. IV.G.3, we use a linear interpolation to obtain W̄ðzÞ.
The theory developed so far captures the effect of particle

shape on the average Voronoi volume as a function of a given
z. The particle shape is taken into account in three quantities:
(i) c�ðĉÞ, parametrizing the surface of the shape (V̄� and S̄�

vanish for c ≤ c�); (ii) sðr; t̂; ĉÞ, parametrizing the VB
between two particles of relative position r and orientation
t̂; and (iii) the contact radius r�ðr̂; t̂Þ. In the spherical limit, all
these quantities simplify considerably and the spherical theory
is recovered, which is analytically solvable as discussed in
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Sec. IV.A. For nonspherical shapes, the VB point (ii) is in
general not known in closed form. In the next section, we
discuss a class of shapes for which the VB can be expressed in
exact analytical form. For these shapes, the theory can be
applied in a relatively straightforward way, solving V̄� and S̄�

numerically and providing also W̄ðzÞ in numerical form. In
Sec. IV.G.3 we then discuss the missing part in the theory so
far, the dependence of z itself on the particle shape.

2. Parametrization of the Voronoi boundary between
nonspherical shapes

In Sec. II.D.1 the precise definition of the VB between two
particles has been given. We have seen that the VB between
two equal spheres is identical to the VB between two points
and is a flat plane perpendicular to the separation vector.
Finding the VB for more complicated shapes is a challenging
problem in computational geometry, which is typically only
solved numerically (Boissonat, Wormser, and Yvinec, 2006;
Schaller et al., 2013). Already for ellipsoids, one of the
simplest nonspherical shapes, there is no exact expression for
the VB. We nevertheless approach this problem analytically
by considering a decomposition of the shape into overlapping
spheres [see Figs. 17(a)–17(d)]. Such a decomposition is
trivial for dimers, trimers, and n-mers, where the VB arises
effectively due to the interaction of 4, 6, and 2n points. It also
applies exactly to spherocylinders, which can be represented
as dense overlaps of spheres. In this case, the VB arises due to
the effective interaction of two lines and four points.
The Voronoi decomposition used for n-mers and spher-

ocylinders can be generalized to arbitrary shapes by using a
dense filling of spheres with unequal radii (Phillips et al.,
2012). However, even though this approach is algorithmically
well defined, it may become practically tedious for dense
unions of polydisperse spheres. An alternative approach that is
analytically tractable was proposed by Baule et al. (2013):
convex shapes are approximated by intersections of a finite
number of spheres. For example, an oblate ellipsoid is
approximated by a lens-shaped particle, which consists of
the intersection of two spheres (Cinacchi and Torquato, 2015).
Likewise, an intersection of four spheres can be considered an
approximation of a tetrahedron, and six spheres that of a cube
[see Figs. 17(e)–17(h)]. The main insight is that the effective
Voronoi interaction of these shapes is governed by a sym-
metry: points map to “antipoints” (since the interactions
between spheres is inverted). The VB of ellipsoidlike objects
arises from the interaction between four antipoints and four
points in two dimensions or lines in three dimensions and thus
falls into the same class as spherocylinders. The VB between
two tetrahedra is then due to the interaction between the
vertices (leading to four point interactions), the edges (leading
to six line interactions), and the faces (leading to four antipoint
interactions). For cubes the effective interaction is that of 12
lines, 8 points, and 6 antipoints. This approach can be
generalized to arbitrary polyhedra.
With such a decomposition into overlapping and intersect-

ing spheres, we can study a large space of particle shapes
using Edwards ensemble. The resulting VBs can be para-
metrized analytically following an exact algorithm (Baule et
al., 2013); see Appendix C.

3. Dependence of the coordination number on particle shape

As discussed in Sec. II.A the physical conditions of
mechanical stability and assuming minimal correlations moti-
vate the isostatic conjecture, Eq. (35), z ¼ 2df in the friction-
less case. While isostaticity is well satisfied for spheres,
packings of nonspherical objects are in general hypocon-
strained with z < 2df , where zðαÞ increases smoothly from the
spherical value for α > 1 (Donev et al., 2004, 2007; Wouterse,

Object shape Decomposition Effective Voronoi interaction

Sphere

Dimer

Trimer

Spherocylinder

One sphere Two points

Two spheres Four points

Three spheres Six points

Two lines and four pointsN spheres

Ellipsoid

Tetrahedron

Two spheres

Four spheres Six lines, four points, four anti-points

Two lines and four anti-points

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Cube Six spheres
Twelve lines, eight points,
six anti-points

Irregular polyhedron Unequal spheres Points, lines, anti-points

(h)

FIG. 17. Table of different shapes and their VBs. (a)–(d) For
shapes composed of spheres, the VB arises due to the effective
interaction of the points at the centers of the spheres. Since
spherocylinders are represented by a dense overlap of spheres,
the effective interaction is that of two lines and four points.
(e)–(h) For more complicated shapes that would in principle be
modeled by a dense overlap of spheres with different radii, we
propose approximations in terms of intersections of spheres
leading to effective interactions between “antipoints.” For both
classes of shapes, the VB follows an exact algorithm leading to
analytical expressions (see Fig. 25). From Baule et al., 2013.
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Luding, and Philipse, 2009; Baule et al., 2013). The fact that
these packings are still in a mechanically stable state can be
understood in terms of the occurrence of stable degenerate
configurations, which have so far been shown to occur in
packings of ellipses, ellipsoids, dimers, spherocylinders, and
lens-shaped particles (Chaikin et al., 2006; Donev et al., 2007;
Baule et al., 2013). In the case of ellipses, one needs in general
four contacts to fix (jam) the ellipse locally such that no
displacement is possible (Alexander, 1998). However, it is
possible to construct configurations, where only three contacts
are sufficient, namely, when the normal vectors from the
points of contact meet at the same point and the curvature on at
least one of the contacts is flat enough to prevent rotations
(Chaikin et al., 2006). Such a configuration is degenerate
since force balance automatically implies torque balance such
that the force and torque balance equations (2) and (3) are no
longer linearly independent. Despite the fact that these
configurations should have measure zero in the space of all
possible configurations, they are believed to appear more
frequently in simulation algorithms such as the LS algorithm
(Donev et al., 2007).
For spherocylinders, the degeneracy appears due to the

spherical caps, which project the normal forces onto the end
points of the central line of the cylindrical part. If all of the
contacts are on the spherical caps, which will frequently occur
for small aspect ratios, force balance will then always imply
torque balance, since the force arms of the two points are
identical (see Fig. 18). A similar argument applies to dimers
and lens-shaped particles and can possibly be extended to
other smooth shapes. In the case of spherocylinders, a
degeneracy also appears for very large aspect ratios, because
then all contacts will predominantly be on the cylindrical part.
As a consequence, the normal vectors are all coplanar and the
number of linearly independent force and torque balance
equations is reduced by 1 predicting the contact number
z → 8 as α → ∞, which is indeed observed in simulations
(Wouterse, Luding, and Philipse, 2009; Zhao et al., 2012).
A quantitative method to estimate the probability of these

degenerate configurations is based on the assumption that a
particle is always found in an orientation such that the
redundancy in the mechanical equilibrium conditions is
maximal (Baule et al., 2013). This condition allows us to

associate the number of linearly independent equations
involved in mechanical equilibrium with the set of contact
directions. Averaging over the possible sets of contact
directions then yields the average effective number of degrees
of freedom ~dfðαÞ from which the coordination number follows
as zðαÞ ¼ 2~dfðαÞ (Baule et al., 2013). This approach recovers
the continuous transition of zðαÞ from the isostatic spherical
value z ¼ 6 at α ¼ 1 to the isostatic value z ¼ 10, for aspect
ratios above ≈1.5 observed in ellipsoids of revolution,
spherocylinders, dimers, and lens-shaped particles; see
Fig. 19(a). The trend compares well to known data for
ellipsoids (Donev et al., 2004) and spherocylinders
(Wouterse, Luding, and Philipse, 2009; Zhao et al., 2012).
Combining these results on zðαÞ with the results of

Sec. IV.G.1 on the average Voronoi volume W̄α leads to a
closed theoretical prediction for the packing density ϕðαÞ ¼
V0=W̄α(zðαÞ) which does not contain any adjustable param-
eters. Figure 19(b) presents the results for dimers, spherocy-
linders, and lenses showing that the theory is an upper bound
of the maximal densities measured in simulations. The theory
predicts the maximum density of spherocylinders at α ¼ 1.3
with a density ϕmax ¼ 0.731 and that of dimers at α ¼ 1.3
with ϕmax ¼ 0.707. For lens-shaped particles a density of
ϕmax ¼ 0.736 is obtained for α ¼ 0.8, representing the densest
random packing of an axisymmetric shape known so far. The
theoretical predictions of ϕðαÞ compare quite well with the
available numerical data for spherocylinders and dimers
[Figs. 19(c) and 19(d)]. The numerical results are obtained
with a range of different packing algorithms and show a large
variance in terms of the maximal packing densities obtained
for the same shape. The appearance of such a range of
densities is understood in detail for the case of spheres; see the
discussion in Sec. III.A.4. As for spheres, the single rcp value
calculated within the Edwards ensemble for a given shape is
interpreted as a maximum entropy value.
By plotting z against ϕ parametrically as a function of α, we

can also include our results in the z–ϕ phase diagram, which is
thus extended from spheres to nonspherical particles and
discussed next. By plotting ðϕ; zÞ the apparent cusplike
singularity at the spherical point α ¼ 1 in zðαÞ and ϕðαÞ
[Figs. 19(a) and 19(b)] disappears and the spherical rcp point
becomes as any other point in the phase diagram.

H. Toward an Edwards phase diagram for all jammed matter

The results from Secs. IV.B, IV.F, and IV.G are combined in
a phase diagram of jammed matter that can guide our
understanding of how random arrangements of particles fill
space as shown in Fig. 20. The representation in the z–ϕ plane
is in a way the most natural choice, since both ϕ and z are
macroscopic observables that characterize the thermodynamic
state of the packing. They can also be measured in simulations
in a straightforward way. Although Fig. 20 is far from
complete, we observe clear classifications of packings based
on the symmetry and surface properties of the constituents.
Horizontal phase boundaries are identified by the isostatic
condition for frictionless particles, predicting z ¼ 6

for isotropic shapes and z ¼ 10 (z ¼ 12) for rotationally
symmetric (fully asymmetric) shapes, respectively. The

FIG. 18. A degenerate configuration of a spherocylinder. Vec-
tors r1;…; r4 indicate contacts on the spherical caps. The normal
vector projects the contact forces f1;…; f4 onto the centers of the
spherical caps. Because of the symmetry of the two centers, the
respective force arms are equal and force balance automatically
implies torque balance. The force and torque balance equa-
tions (2) and (3) are thus degenerate. From Baule et al., 2013.
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frictionless rcp point at ϕEdw ¼ 0.634… and z ¼ 6 plays a
prominent role in the phase diagram, despite the fact that it
contracts the J line. It splits up (although in a continuous
manner, except for ordering) the equation of state into four
different branches governed by friction, shape, adhesion, and
order as follows:
Frictional branch: The infinite compactivity rlp branch

connects the rcp point (0.634,6) with the minimal rlp point at
(0.536,4). This branch is the upper limit of the triangle of
mechanically stable disordered sphere packings depicted in
the phase diagram for 3D monodisperse spheres in Fig. 12.
The rlp branch is parametrized by varying the friction μ and
thus z in the equation of state (84).
Nonspherical branch: Surprisingly, we find that both dimer

and spherocylinder packings appear as smooth continuations
of spherical packings. The analytic form of this continuation
from the spherical random branch can be derived (blue dashed
line in Fig. 20) by solving the self-consistent equation (123)
perturbatively for small aspect ratios (Baule et al., 2013).
A comparison of our theoretical results with empirical data

for a large variety of shapes indicates that the analytic

continuation provides an upper bound of density on the
z–ϕ phase diagram for a fixed z. Maximally dense disordered
packings appear to the left of this boundary, while the
packings to the right of it are partially ordered. We observe
that the maximally dense packings of dimers, spherocylinders,
lens-shaped particles, and tetrahedra all lie surprisingly close
to the analytic continuation of rcp. Whether there is any
deeper geometrical meaning to this remains an open question.
Recent exact local expansions from the spherical rcp point to
arbitrary shapes agree very well with our results and may shed
further light on this question (Kallus, 2016). We also notice
that the frictional and nonspherical branches are continuous at
the spherical rcp point suggesting that a variation in friction
might be analogous to varying shape in the phase diagram.
Adhesive branch: The nonspherical branch can also be

continued into the adhesive branch of spheres, which splits off
at rcp. The adhesive branch describes the universal high
adhesion regime for Ad > 1 reaching the ALP point at
ϕ ¼ 1=23 and z ¼ 2 (see Sec. IV.F).
Spherical ordered branch: As discussed in Sec. III.A.4, the

rcp point has been associated with the freezing point of a first-

(a) (b)

(c) (d)

FIG. 19. Theoretical predictions for packings of nonspherical particles. (a) The variation zðαÞ obtained by evaluating the occurrence of
degenerate configurations for dimers, spherocylinders, ellipsoids of revolution, and lens-shaped particles. A smooth increase is obtained
in agreement with simulation data. For spherocylinders, z decreases to the value 8 as α → ∞. (b) Combining zðαÞ with the results on W̄α

from the volume ensemble leads to theoretical predictions for ϕðαÞ exhibiting a density peak for dimers, spherocylinders, and lens-
shaped particles. Results on ϕmax for the three shapes from simulations are indicated by the symbols. The theory well captures both the
location of the peak and the maximum density. (a), (b) From Baule et al., 2013. (c) Detailed comparison of theory and simulations for
spherocylinders (Lu et al., 2010; Kyrylyuk et al., 2011; Zhao et al., 2012). The theoretical peak is slightly shifted to the left and more
pronounced than in the empirical data. (d) Detailed comparison of theory and simulations for dimers (Faure, Lefebvre-Lepot, and Semin,
2009; Schreck and O’Hern, 2011) showing excellent agreement.
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order phase transition between a fully disordered packing of
spheres and the crystalline fcc phase (Radin, 2008; Jin and
Makse, 2010). The signature of this disorder-order transition
is a discontinuity in the entropy density of jammed configu-
rations as a function of the compactivity. Experiments on
hard-sphere packings indeed confirm the first-order transition
scenario, observing the onset of crystallization at ϕf ≈ 0.64 at
the end of the frictional branch, as well as the coexistence line
(Francois et al., 2013; Hanifpour et al., 2014, 2015). The
spherical ordered branch provides another boundary, which
separates tetrahedra from all other shapes: tetrahedra are the
only shape known so far that pack in a disordered way denser
than spheres in a fcc crystal.
The picture that emerges from this phase diagram is that

spherical packings can be generated on the frictional branch
between the rlp and rcp limits by variation of the interparticle
friction and along the adhesion branch by varying interparticle
attraction. Beyond rcp, these two lines can be continued
smoothly by deforming the sphere into elongated shapes. The
ordered branch does not connect smoothly to any of these
branches, but instead appears through a first-order phase
transition with a coexistence regime. It suggests that introducing
order is a more drastic modification than modifying the particle
interactions due to geometry or surface frictional properties.
This distinction is similar to the one between discontinuous
first- and continuous higher-order phase transitions.
Overall, it seems that the central importance historically

given to the spherical rcp point may not be justified. In the
whole share of things, the spherical point appears as any other
inconsequential point in a continuous variation of jammed
states driven by friction, attraction, and shape. It is as though
each jammed state (ranging from spherical to dimers, trimers,
polymers, spherocylinders, ellipsoids, tetrahedra, and cubes,

from frictionless to frictional and adhesive grains) carries the
features of one great single organizing principle in which all
the jammed states organize too, so that everything links to
everything else, moved by one organizing idea which is the
universal physical principle in nature (Schopenhauer, 1974).
Such an organizing principle is captured by the phase

diagram in Fig. 20 where the volume fraction as a function of
α for nonspherical particles appears as an analytical con-
tinuation of the equation of state for the spherical particles. It
is as though the sphere system with friction can be made
analogous to a nonspherical system without friction by
following the continuation branch. Likewise, the rcp point
bifurcates into other equations of state following the appear-
ance of adhesion between particles as seen in Fig. 20. We
may conjecture that all these packings with different inter-
actions (from hard spheres to attraction and friction) and
different shapes (from spheres to ellipsoids, etc.) can be made
part of an organizing principle embodied in the statistical
mechanical laws.

V. JAMMING SATISFACTION PROBLEM

We close our review by providing a novel understanding
of the jamming criticality under the Edwards ensemble as the
phase transition between the satisfiable and the unsatisfiable
phases of the jamming satisfaction problem. At the very end
we suggest a unifying view of the Edwards ensemble of grains
with the statistical mechanics of spin glasses.
As explained in Sec. II.A, a packing can be described as an

ensemble of particles with given positions and orientations,
satisfying a set of geometrical and mechanical constraints.
As such, it is an instance of a constraint satisfaction problem:
the jamming satisfaction problem. Solving the JSP, in general,

FCC

RCP

Dimers theory

Spherocylinders theoryFrictional branch

Spherical ordered
branch

I. Spherical

II. Axisymmetric

III. Aspherical
Tetrahedra (Haji-Akbari et al 2009)
Icosahedra (Jiao & Torquato 2011)
Dodecahedra (Jiao & Torquato 2011)
Octahedra (Jiao & Torquato 2011)
Aspherical ellipsoids (Donev et al 2004)

Prolate ellipsoids (Donev et al 2004)
Oblate ellipsoids (Donev et al 2004)
M&M candy (Donev et al 2004)
Spherocylinders (Zhao et al 2012)
Dimers (Schreck & O Hern 2011)
Lens-shaped particles

Adhesive branch

Non-spherical
branch

coexistence line

RLP

FIG. 20. Unifying phase diagram in the z–ϕ plane resulting from the Edwards volume ensemble theory. Theoretical results on the
equations of state for spheres with and without adhesion and dimers and spherocylinders are plotted together with empirical results on
maximal packing densities for nonspherical shapes from the literature (where z and ϕ have been determined in the same simulation).
Different phases are identified by the symmetry of the constituents. Different equations of state due to friction, adhesion, shape, and
(partial) order all come together at the rcp point. Indicated are the frictional branch (Song, Wang, and Makse, 2008), the spherical
ordered branch (Jin and Makse, 2010), the nonspherical branch (Baule et al., 2013), and the adhesive branch (Liu et al., 2015). Adapted
from Baule and Makse, 2014.
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is a very complicated task, and one needs to resort to some
approximations. The first main approximation that we applied
across this review consisted of decoupling the geometrical
problem of determining the contact network of the packing
from the mechanical problem of finding the force distribution.
Thus, in Sec. IV we developed the Edwards volume ensemble
that considers in detail the volume ensemble, but does not
directly consider the full force ensemble, which is taken into
account only by the global isostatic constraint on the average
coordination number establishing force balance.
Next we consider another reduced JSP where one now fixes

the geometry of the packing considering it as a random graph
(thus, fixing the volume ensemble), and then considering the
full force ensemble on these random graphs to find the force
distribution (Bo et al., 2014). An ensemble average over all
possible random graphs consistent with prescribed (local)
conditions of jamming and excluded volume on the positions
of neighboring particles is performed to obtain the force
distribution. Such a reduced JSP is therefore amenable to be
solved for sparse networks by the cavity method from spin-
glass theory (Mézard and Parisi, 2001; Mézard and
Montanari, 2009).
This force distribution is nothing but the uniform Edwards

measure Θjam over all possible solutions of the JSP, Eq. (10),
where the hard-core constraint is relaxed, being automatically
satisfied because we are considering the contact network
fixed. To emphasize the dependence of Θjam solely on the
force configuration ffg for a given realization of the contact
network fdg, we use the notation ΘjamðffgjfdgÞ ¼ PðffgÞ,
with the normalization or partition function Z as the
number of solutions of this JSP. The important point is that
if Z ≥ 1, then there exists a solution to the JSP, i.e., it is
satisfiable (SAT). Conversely, if Z < 1 there are no solutions
to the JSP, i.e., it is unsatisfiable (UNSAT) (Kirkpatrick and
Selman, 1994).
The SAT-UNSAT threshold of the JSP is marked by the

coordination number zmin
c ðμÞ that separates the region where

solutions do exist (i.e., where Z > 1) from the region without
solutions (where Z < 1), corresponding to an underdeter-
mined or overdetermined set of equations, respectively (Bo
et al., 2014). In the limiting case of frictionless particles,
zmin
c ðμÞ should be compared with the naive Maxwell counting
isostatic condition zmin

c ðμ ¼ 0Þ ¼ 2df , although the JSP takes
into account the full set of constraints, Eqs. (10), rather than
only force balance as in Maxwell counting. The JSP thus
extends this naive counting to the full set of constraints
including friction μ. A jammed isostatic assembly of particles
lies exactly on the edge between these two phases, i.e., where
a solution to the JSP first appears as one increases the average
coordination number zðμÞ. Figure 23 shows the average
coordination number zmin

c ðμÞ at the jamming transition as a
function of the friction coefficient μ in a 2D sphere packing,
obtained by solving the JSP through the cavity method as
explained next (Bo et al., 2014). Results are consistent with
existing numerical simulations (Makse, Johnson, and Schwartz,
2000; Silbert et al., 2002; Kasahara and Nakanishi, 2004;
Shundyak, van Hecke, and van Saarloos, 2007; Song, Wang,
and Makse, 2008; Silbert, 2010; Papanikolaou, O’Hern, and
Shattuck, 2013; Shen et al., 2014).

A. Cavity approach to JSP

Solving the JSP amounts to computing the single force
distributions PðfiaÞ at the contacts a’s of the particle i’s.
However, calculating these single force distributions PðfiaÞ
from the joint distribution PðffgÞ Eq. (10) is still a very
demanding computational task, which requires some addi-
tional mean-field approximations to be solved.
There are two preferred mean-field theories (both of

infinite-dimensional nature): the first one is the infinite range
model, which assumes that each particle is in contact with
every other particle in the packing. The archetypical model is
the SK model of fully connected spin glasses (Sherrington and
Kirkpatrick, 1975) which was adapted to the hard-sphere case
in Parisi and Zamponi (2010); see Sec. III.A.4. As a result of
this approximation scheme, the real finite-dimensional contact
network [Fig. 21(a)] is substituted by a fully connected
network of possible interactions, i.e., a complete graph as
shown in Fig. 21(b). The solution of such a model is possible
since, in a complete graph, each interaction becomes very
weak, rendering a fully connected model into a weakly
connected system that can be solved exactly under the
hierarchy of replica symmetry breaking schemes (Mézard
and Montanari, 2009; Parisi and Zamponi, 2010). A simpler
version than the SK model, yet showing all the phenomenol-
ogy of jamming, is a model adapted from machine learning:
the perceptron recently studied by Franz et al. (2015) and
Franz and Parisi (2016).
A second mean-field theory of choice consists of approxi-

mating the contact network by a sparse random graph
(Mézard and Parisi, 2001), which allows one to preserve
an essential property of real finite-dimensional packings: the
finite coordination number z. The sparse random graph
scheme assumes that the local contact network around each
particle can be approximated by a treelike structure, i.e., it
neglects the strong local correlations of loops and force
chains of a real packing [Fig. 21(a)] by a locally treelike
structure [Fig. 21(c)]. Under this approximation the JSP can
be solved by a method known as the cavity method (Mézard
and Parisi, 2001; Mézard and Montanari, 2009), which we
explain next.
Note that, although the cavity approach is a mean-field

theory valid for infinite dimensions, a dimensional depend-
ence appears in the nonoverlap condition in the definition of
the network ensemble; see Bo et al. (2014) for details. The
crucial quantity to consider in the cavity method is not the
single force distribution itself PðfiaÞ, but a modified one,
called the cavity force distribution and denoted by Pi→aðfiaÞ.
Physically, Pi→aðfiaÞ is the probability distribution of the force
fia at the contact a in a modified packing where the particle j
touching the particle i at the contact a has been removed (from
where the name cavity derives). The rationale to consider
Pi→aðfiaÞ instead of the “true” force distribution PðfiaÞ is
that for the cavity distributions it is possible to derive a set of
self-consistent equations if one neglects the correlation
between Pi→aðfiaÞ and Pj→aðfjaÞ (hence the need of a treelike
network) (Bo et al., 2014).
For example, the cavity equation for Pi→aðfiaÞ can be

obtained by simply convoluting the cavity force distributions
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Pk→bðfkbÞ of the particles k ≠ j neighbors of particle iwith the
local mechanical constraint χi, as depicted in Fig. 22 and
mathematically expressed as follows:

Pi→aðfiaÞ ∝
Z Y

b∈∂ina
dfkb χi

Y
k∈∂bni

Pk→bðfkbÞ; ð128Þ

where the symbol ∝ implies a normalization factor, and the
mechanical constraint χi on particle i is given by

χiðffiaga∈∂iÞ ¼ δ

�X
a∈∂i

fia

�
δ

�X
a∈∂i

di
a × fia

�

×
Y
a∈∂i

θðμfia;n − jfia;τjÞθð−di
a · fiaÞ: ð129Þ

Note that the contact directions fdi
ag are kept fixed: they

represent the “quenched” disorder introduced by the under-
lying contact network, which is kept fixed.
Once the set of cavity equations (128) has been solved—

e.g., by iteration under the RS assumption (Bo et al., 2014)—
one can reconstruct the original force distribution at contact
a by simply multiplying the cavity force distributions
Pi→aðfiaÞ and Pj→aðfjaÞ coming from the two particles i
and j in contact at a:

PðfiaÞ ∝ Pi→aðfiaÞPj→aðfjaÞ: ð130Þ

The result shows an exponential decay at large forces and a
nonzero value for PðfÞ at f ¼ 0, i.e., it gives an exponent at
the RS level

θRS ¼ 0 ð131Þ

for the small force scaling PðfÞ ∼ fθ, Eq. (48). This last
prediction is inconsistent with simulation results, which
find a nonzero value of the exponent θ in the interval
0.2 ≤ θ ≤ 0.5. It should be noted that Eq. (131) is obtained
exactly at the thermodynamic limit, so no finite size effects
are expected.
The discrepancy could be in principle due to the abun-

dance of short loops in the real finite-dimensional contact
network that are neglected by the locally treelike contact
network structure considered by the cavity method.
However, it is known that the fraction of short force loops
decreases with dimension at jamming—a result valid for any
random network in infinite dimensions—yet, the nonzero
weak force power-law exponent is obtained in the high-
dimensional calculations in the fully connected case
(Charbonneau et al., 2012). In this case, the complexity lost
by the consideration of a uniform fully connected network is
somehow overcome by the fractal complexity provided by
the full-RSB solution, which in this case gives rise to the
concomitant nonzero small force exponent. Whether a zero
exponent result is the by-product of the cavity calculation
being done at the RS level or of the absence of loops in the
structure is to be determined.
A similar situation appears in the replica approach to the

problem: the original 1RSB calculation under the replica
approach of the force distribution for hard-sphere glasses done
by Parisi and Zamponi (2010) led to a trivial scaling

θ1RSB ¼ 0; ð132Þ

while the nonzero exponent was obtained only when the full-
RSB calculation was performed (Charbonneau et al., 2014b)

θfull-RSB ¼ 0.42… . ð133Þ

It should be noted, though, that 1RSB level calculations and
above are substantially more difficult to perform with the
cavity method than with replicas [e.g., no calculation exists

FIG. 21. (a) A real finite-dimensional packing is composed of
strongly correlated force chains and geometrical loops at short
scale. However, state-of-the-art theoretical approaches to describe
this correlated structure rely upon mean-field infinite-dimen-
sional approximate treatments of such a packing as a: (b) fully
connected packing where every single particle interacts with any
other particle in the packing; the real interaction network is
approximated by a complete graph, i.e., each node is connected
with all other nodes as shown for one of them. (c) Locally treelike
packing where the real network is approximated by a sparse
random graph that locally looks like a tree structure with no
loops, i.e., loops in the network are neglected, except at relatively
large scales that diverge with system size, although very slowly as
l ∼ lnN. (a) From the Behringer Group, Duke University.

FIG. 22. Calculation of the cavity force distribution Pi→a. First
particle j (dashed contour) is virtually removed from the packing.
Then Pi→a for particle i is computed by convoluting the
distributions Pk→b of the neighboring particles k with the local
mechanical constraint χi enforcing force and torque balances.
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above 1RSB with the cavity method for any model, although it
was recently conjectured how the cavity method could be used
to describe the full-RSB scenario (Parisi, 2017)].
Despite these discrepancies, the main result of the cavity

approach is the detection of the SAT-UNSAT transition of the
JSP for sphere packings with arbitrary friction coefficient, and
a lower bound estimate of the critical coordination number
zmin
c ðμÞ at the jamming transition as a function of the friction
coefficient μ, as shown in Fig. 23. Moreover, the cavity
method seems a promising way to study JSPs for packings
with particles of arbitrary shapes, which are difficult to
perform with replicas.

B. Edwards uniform measure hypothesis in the
Edwards-Anderson spin-glass model

The main goal of this section is to investigate Edwards
conjecture of equiprobable jammed states in the spin-glass
model first introduced by Edwards together with Anderson
(Edwards and Anderson, 1975), thus, bringing together two of
the most significant contributions of Edwards: spin glasses
(Edwards and Anderson, 1975) and granular matter (Edwards
and Oakeshott, 1989). We leverage some rigorous results
(Newman and Stein, 1999) to understand what is effectively
right and what may go wrong with that hypothesis by
precisely stating it in terms of metastable states in spin glasses
and jamming. We will see how this definition of metastable
jammed states leads to the most precise test so far of the
Edwards uniform measure hypothesis in the exactly solvable

SK model (Sherrington and Kirkpatrick, 1975), which we
propose to perform in Sec. V.C.
The Ising spin glass on the d-dimensional cubic lattice Zd,

also known as the Edwards-Anderson model, is described by
the following Hamiltonian (Edwards and Anderson, 1975):

HðσÞ ¼ −
X
hiji

Jijσiσj; ð134Þ

where i are the sites of Zd, the spins σi ¼ �1, and the sum is
over nearest neighbor spins. The couplings Jij are indepen-
dent identically distributed random variables, and we assume
their common distribution to be continuous and to have a
finite mean.
A distinguishing property of spin glasses, which pertains to

many complex systems including granular media, is that they
feature a “rugged energy (or free energy) landscape.” To be
more clear, let us consider a zero-temperature dynamics,
where at each time step a spin is randomly chosen and flips
if it lowers the energy; otherwise it does not move, until no
more spins will flip. At variance with a pure ferromagnet, in
the spin glass this dynamics arrests very quickly and also at a
quite high-energy state, the reason being due to, precisely, the
abundance of metastable states. The type of metastable states
concerned in this specific case are 1-SF metastable states,
discussed in Sec. II.B and Fig. 4(a), since they are reached
following a dynamics that flips one spin at a time: when the
system arrives in one of these configurations, no single spin
can lower the energy by flipping, but if two neighboring spins
are allowed to flip simultaneously, then lower energy states
are available. In other words, 1-SF states are stable against a
single spin flip, but not necessarily against two (or more)
simultaneous spin flips. An example of a one-spin-flip
metastable state is shown in Fig. 24 along with a possible
two-spin-flip move (shown in the lowest panel) needed to
escape the 1-SF metastable trap. As discussed in Table I these
1-SF metastable states are analogous to the locally jammed
states introduced by Torquato and Stillinger (2001) and called
1-PD in the table.
The concept of 1-SF metastable states can be easily

extended to k-spin-flip (k-SF) metastable states, even without
resorting to a specific dynamics, but using solely the
Hamiltonian of the system Eq. (134) (Biroli and Monasson,
2000). We define a k-spin-flip metastable state as a (infinite
volume) configuration whose energy cannot be lowered by
flipping any connected subset of 1; 2;…; k spins. In particular,
the ground states of the system correspond to configurations
whose energy cannot be lowered by flipping any finite number
of spins, i.e., they are found in the limit k → ∞, hence the
ground state of the spin glass is the ∞-SF state; see Fig. 4(a).
The k-SF metastable states are analogous to the k-PD

metastable collective jamming states defined in Table I that
generalize the concept of collective jamming in Torquato and
Stillinger (2001). The corresponding ground state of jamming
is then the ∞-PD state. We, thus, end up with a nice analogy
between spin glasses and jamming which we can leverage to
harness the nature of metastable jammed states in terms of
exact results for spin-glass metastable states obtained by
Newman and Stein (1999).

FIG. 23. Linear-log plot of the average coordination number
zmin
c ðμÞ at the jamming transition as a function of the friction
coefficient μ in a 2D sphere packing calculated with the cavity
method. The curve zmin

c ðμÞ separates the SAT-UNSAT phases of
jamming. For z > zmin

c ðμÞ, the force balance equations are
satisfied while they are not when z < zmin

c ðμÞ. At the transition
zmin
c ðμÞ for a given μ a jammed critical state exists separating the
SAT from the UNSAT phases. zmin

c ðμÞ shows a monotonic
decrease with increasing μ from the isostatic Maxwell estimation
zmin
c ðμ ¼ 0Þ ¼ 2D ¼ 4 to zmin

c ðμ ¼ ∞Þ ≥ Dþ 1 ¼ 3. The error
bars indicate the range from the largest zmin

c ðμÞ having no solution
to the smallest zmin

c ðμÞ having solution. Data points represent the
mean of the range. From Bo et al., 2014.

Baule et al.: Edwards statistical mechanics for jammed …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015006-45



It is important to see that the k-PD or k-SF states are
hierarchically organized one inside another as seen in
Fig. 4(a). For instance, 2-PD (2-SF) metastable states form
a subset of the 1-PD (1-SF) metastable states, since states
which are 2-SF stable are automatically 1-SF stable, but the
converse is not necessarily true. Also, the energies of 2-SF
metastable states may cross, in principle, the energies of 1-SF
metastable states; see Fig. 4(a). This hierarchy defines the
k-SF-core metastable states and the k-SF shell: the 1-SF shell
consists of 1-SF metastable states which are not in the 2-SF
core. In general, the k-SF shell consists of k-SF metastable
states which are not in the (kþ 1)-SF core. The ∞-SF core is
then the ground state.
Now we ask: how do we visit the k-SF metastable states

for k > 1? To answer this question we need to introduce more
precisely the concept of dynamics.
A k-spin-flip dynamics is defined in such a way that rigid

flips of all lattice animals (finite connected subsets of Zd) up to
k spins can occur. For example, in the case k ¼ 2 both single-
spin flips and rigid flips of all nearest neighbor pairs of spins
are allowed (see the bottom panel in Fig. 24 as an example of a
2-SF move). At each step of the dynamics a lattice animal of
size l ≤ k is chosen at random with probability pl and it flips
if the resulting configuration has lower energy, otherwise it
does not flip. We denote by ωk a given realization of this k-SF
dynamics (Newman and Stein, 1999) and the ending meta-
stable configuration of such a path as σ∞k .
Having defined the k-SF dynamics, we can now state an

important rigorous result obtained by Newman and Stein
(1999): every end state σ∞k of a dynamics ωk has the same
energy density ek (energy per site), which thus depends only
on the choice of the k-SF dynamics. Therefore, once a given
k-SF dynamics is chosen, almost all realizations ωk of this
dynamics will end in configurations σ∞k having the same

energy density. Furthermore, if we focus only on the states of
energy ek reachable by the dynamics we chose (which may
not be all the available states with that energy), can we say
something about the way they are sampled by the dynamics?
The answer is yes, in that all these final states not only have
the same energy, but they are equiprobable, i.e., they are
reachable with the same probability as rigorously proved by
Newman and Stein (1999). Because of the fact that the states
reachable by the dynamics may not represent all the available
states with that energy, then this rigorous proof represents a
weak proof of the Edwards uniform measure. The strong proof
would imply that all states available at energy ek are indeed
accessed by the dynamics. We can graphically explain this
point with the aid of Fig. 4(a). Consider a given energy ϵk and
the corresponding set of k-SF and k-PD metastable states with
energy ϵk, i.e., the ones with complexity Σk SFðϵkÞ. The whole
set of available k-SF and k-PD states with energy ϵk forms the
k-SF core. Thus, the strong proof of the Edwards uniform
measure would imply all the states in the k-SF core to be
accessible by the k-SF dynamics.
We thus arrive at the following important conclusions:
(1) For a given choice of the dynamics, we can never visit

all the available k-SF and k-PD metastable states,
because they span a continuous range of energies
(or volume fractions) and, evidently, it does not make
much sense to ask if we visit those states with equal
probability, without further specifying their energy (or
volume fraction).

(2) If a given k-SF or k-PD dynamics visits all the
metastable states in the k-SF or k-PD core, then these
states are also visited with the same probability.

In light of conclusion (1) we may reformulate Edwards
hypothesis for a particular k-PD state rather than for all the
states (all k-PD states) together, saying that “when N grains
occupy a volume V, they do so in such a way that all the k-PD
metastable states corresponding to that volume V are equally
weighted.”
From conclusion (2) we arrive at the real meaningful

question and related Edwards conjecture, which is: does a
given dynamics, which terminates always in configurations
having the same energy (or volume fraction), sample uni-
formly all the available metastable states at that given energy,
i.e., the whole k-SF or k-PD core?
As discussed in Sec. III.B there exist certain protocols that

do not sample packing states with a uniform probability
therefore Edwards hypothesis may not be proved correct for
all possible protocols. Likewise, simulations of jammed states,
for instance, using LS algorithms (Lubachevsky and
Stillinger, 1990), may not be able to provide an answer to
this question for systems large enough to be of definitive
value. Thus, in the next section we propose an exact
calculation to test Edwards ergodic assumption in the exactly
solvable Sherrington-Kirkpatrick model (Sherrington and
Kirkpatrick, 1975), which is a mean-field model of a spin
glass where the metastable states can be mathematically and
precisely defined and allow for a rigorous test of Edwards
hypothesis.
The Edwards hypothesis in a more general sense applies to

granular matter and spin glasses and hard-sphere glasses as

FIG. 24. Example of a one-spin-flip (1-SF) stable configuration.
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well. Thus we explore this analogy in the next section to test
Edwards ergodic hypothesis in more detail.

C. Opening Pandora’s box: Test of Edwards uniform measure in
the Sherrington-Kirkpatrick spin-glass model

As explained in this review, four recent (and not so recent)
remarkable results have been achieved that support the validity
of the uniform measure hypothesis for jammed states as
proposed by Edwards:

(1) The state-of-the-art simulations done by Martiniani
et al. (2017) allowing a direct computation of basin
volumes of distinct jammed states, which confirm the
validity of Edwards ergodicity at the jamming tran-
sition (Sec. III.B and Fig. 10).

(2) The exact solution of the jammed ground state in
an infinite-dimensional fully connected hard-sphere
model done by Charbonneau et al. (2014b) using full
replica symmetry breaking. The ∞-PD ground states
stable under k-PD displacements with k → ∞ and
N → ∞ and finite α ¼ k=N define the J line ranging
from α ¼ 0 to 1 [see Fig. 4(a)] and are obtained using
the Edwards uniform measure.

(3) The analytical study by Sharma, Yeo, and Moore
(2016) of zero-temperature metastable minima in a
classical Heisenberg spin glass in a random magnetic
field. Such a study confirms that the energy reached
dynamically is in agreement with a computation of
metastable states using Edwards equiprobability; see
Eq. (12) in Sharma, Yeo, and Moore (2016).

(4) The rigorous results of Newman and Stein (1999)
probing a weaker formulation of Edwards uniform
measure: the final states in which a zero-temperature
dynamics in spin-glass models arrive at a given energy
are solely determined by the dynamical protocol and
are accessed with equal probability for a given energy.
The important fact is that for every protocol there are
certain states with a given energy that are achievable
and those states are equally probable. Although the
final states visited by the protocol may not be all the
available states with that energy, hence the weak
Edwards formulation.

Armed with these four results, we now propose to perform a
fifth exact calculation to integrate them and provide another
(most probably penultimate, perhaps final) test to the long-
standing saga on the validity of the Edwards uniform measure
[Fig. 4(b)]. The test consists of validating the Edwards
measure in the metastable states as done by Sharma, Yeo,
and Moore (2016), following the use of the Edwards
assumption to calculate the ground state of the hard-sphere
model in Charbonneau et al. (2014b) and using the exact
results of Newman and Stein (1999). This test can be done for
the 1-SF metastable states in the exactly solvable SK spin-
glass model (Sherrington and Kirkpatrick, 1975), which is the
canonical mean-field model of spin glasses. The interest in
considering this particular model stems from the fact that it
allows one to analytically calculate the metastable states using
Edwards uniform measure. The results of this calculation can
then be compared with the corresponding quantities measured
in dynamical simulations of the SK model. Comparing exact

measurements in the Edwards ensemble with dynamics
provides the ideal testing ground to examine the applicability
of Edwards predictions.

1. Penultimate test of Edwards in the SK model

The SK model is the infinite-dimensional limit of the
Edwards-Anderson model whose Hamiltonian is akin to the
one given in Eq. (134), but the sum runs over all NðN − 1Þ=2
pairs of distinct spins, becoming a solvable mean-field model:

HSKðσÞ ¼ −
1ffiffiffiffi
N

p
XN
i;j¼1

Jijσiσj: ð135Þ

A key quantity that can be calculated exactly in the SK
model is the “complexity” ΣðϵÞ as a function of the energy
density ϵ as schematically shown in Fig. 4(a) (we consider the
system only at zero temperature) (Bray and Moore, 1980).
Physically, the complexity ΣðϵÞ is defined as the logarithmic
scaled number of metastable states N NðϵÞ of a given energy
density e:

ΣðϵÞ ¼ lim
N→∞

logN NðϵÞ
N

; ð136Þ

where N is the size of the system (i.e., the number of spins).
The word “scaled” indicates that ΣðϵÞ is the logarithm of
N NðϵÞ scaled by N.
We propose to solve the SK model for the 1-SF metastable

states to analytically obtain their number N NðϵÞ. From the
“dynamic” point of view, we consider a 1-SF dynamics at zero
temperature, starting from a random initial configuration,
sampled, for example, from a symmetric Bernoulli distribu-
tion. We can then apply the general results previously
discussed. Specifically, the 1-SF dynamics will arrest always
in states (i.e., configurations) having the same energy
(Newman and Stein, 1999), say ϵ, and the number of such
states, which we denote by ΓNðϵÞ, is exponentially large in
the system size N. On the other side, from the “static” point
of view, we can analytically calculate the total number of
available 1-SF metastable states of energy ϵ under the
Edwards uniform measure from Eq. (136), which is given
precisely by N NðϵÞ ∼ eNΣðϵÞ (Bray and Moore, 1980).
The Edwards ergodic hypothesis is as follows: does the

dynamically generated ΓNðϵÞ equal the static uniform aver-
aged N NðϵÞ:

ΓNðϵÞ ¼EdwN NðϵÞ? ð137Þ

And, if so, does the dynamics pick up all the N NðϵÞ states
with the same probability?
If the Edwards hypothesis is correct, then the answer to both

these questions is affirmative. Actually, the first condition, i.e.,
ΓNðϵÞ ¼ N NðϵÞ, is also sufficient for the second to be true
according to the exact results of Newman and Stein, point (4)
(Newman and Stein, 1999). However, measuring ΓNðϵÞ from
the dynamics is not an easy task, and hence we resort to
another convenient quantity. A suitable, and easily measur-
able, observable to test Edwards hypothesis is the distribution
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of local fields PðhÞ. The local field hi acting on spin i is
defined as hi ¼ ð1= ffiffiffiffi

N
p ÞPj≠iJijσj, and, in a 1-SF stable

configuration, all these local fields satisfy the condition
hiσi > 0 for any i [see Bray and Moore (1980), Roberts
(1981) and Eq. (12) in Sharma, Yeo, and Moore (2016)].
Thus, we arrive at a mathematically tractable definition

of a metastable 1-SF state in the SK model, which can be
incorporated into the partition function of the SK model. This
was done by Roberts (1981) by considering the 1-SF con-
dition hiσi > 0 by adding the constraintΘðPj≠iσiJijσjÞ in the
partition function. Thus, the exact mean-field solution for
PðhÞ for this 1-SF metastable state under the Edwards uniform
measure can be obtained. We notice en passant that the work
(Roberts, 1981) predates by a decade the Edwards formu-
lation. Indeed, the validity of Edwards uniform measure was
debated in the spin-glass community (Mézard and Parisi,
2003) earlier than in the granular community.
The number of 1-SF metastable states is then obtained from

N NðϵÞ ¼
X
σ

δ

�
ϵþ 1ffiffiffiffi

N
p

XN
i;j¼1

Jijσiσj

�YN
i¼1

Θ
�
σi
X
j≠i

Jijσj

�
:

ð138Þ

Such a prediction can then be compared with the states
dynamically obtained under a 1-SF dynamics from the SK
model by using, for instance, a single-spin-flip Glauber
dynamics as done by Eastham et al. (2006). Thus, a precise
analytical test of Edwards ergodicity can be achieved in the
SK model for metastable states. To perform a similar test in a
realistic model of granular matter would require a mathemati-
cal definition of 1-PD locally metastable states for jammed
hard spheres analogous to 1-SF in the SK model, which
eventually might be incorporated into the Edwards partition
function of hard spheres to test Edwards hypothesis in such a
jammed model. Such an approach has already proven to be
fruitful. Müller and Wyart (2015) derived corresponding
properties of the SK model and jammed hard spheres based
on marginal stability by exploiting the analogy between a spin
flip and the opening or closing of a particle contact.
Specifically, the test consists of comparing the form of PðhÞ

measured at the ending configurations of the 1-SF dynamics
with the one predicted by Edwards uniform measure, in
particular, for small values of the local fields h ∼ 0, which
assumes the scaling form in analogy with the force distribu-
tion, Eq. (48):

PðhÞ ∼ hα; for h → 0. ð139Þ

We note that a lower bound on the exponent α can already
be derived by imposing the stability of 1-SF metastable
states with respect to single spin flips. The argument goes
as follows: consider two spins σi and σj, along with their local
fields hi and hj and their coupling Jij. The energy cost to flip
one spin, say σi, is given by ΔE ¼ 2jhij − 2Jijσiσj. The
nontrivial case is realized when the bond Jij is satisfied, i.e.,
when Jijσiσj > 0, so that we have ΔE ¼ 2jhij − 2jJijj. Since
this condition must be satisfied even by the smallest possible
field hi ∼ N−1=ð1þαÞ, and since jJijj ∼ N−1=2, then the stability

condition ΔE > 0 of the 1-SF metastable state gives α ≥ 1.
Therefore, the distribution PðhÞ must vanish at small fields
such as hα with an exponent α not smaller than 1. A direct
dynamical measurement of PðhÞ in the final configurations of
a 1-SF dynamics shows that PðhÞ indeed vanishes linearly for
h → 0 (Eastham et al., 2006):

PðhÞ ∼ h; dynamics; ð140Þ

i.e., the lower bound α ≥ 1 is actually saturated.
On the other side, what is the form of PðhÞ calculated by

using Edwards hypothesis on the equiprobability of all the
available 1-SF metastable states of energy ϵ from Eq. (138)?
The exact calculation of PðhÞ for the 1-SF metastable states

using Edwards ensemble can be carried out. In fact, at the
present, PðhÞ has already been obtained using the Edwards
partition function, Eq. (138), but only at the RS level in
Roberts (1981) and Eastham et al. (2006). This calculation
gives for h → 0, Pð0Þ ∝ const > 0 in contradiction with the
dynamical result, Eq. (140). This result has led Eastham et al.
(2006) to claim the failure of the Edwards hypothesis in the
Sherrington-Kirkpatrick spin glass.
However, there is an inconsistency in the RS calculation of

PðhÞ performed by Roberts (1981) and Eastham et al. (2006)
due to the fact that the RS calculation is exact only above a
certain energy density ϵc ∼ −0.672… (Bray and Moore, 1980)
[to the left of the full-RSB transition at α ¼ 0 in Fig. 4(a)], and
ceases to be valid below that energy. But the energy ϵ of the
states selected by the 1-SF dynamics leading to Eq. (140) (and
any protocol we are aware of) lies below the critical energy ϵc
(ϵ < ϵc), where the RS calculation of PðhÞ is not correct.
As a consequence, the RS value of the intercept Pð0Þ obtained
by Eastham et al. (2006) is wrong. Therefore, the correct
calculation to predict PðhÞ for energies ϵ < ϵc to obtain the
exponent α in Eq. (139) to be compared to the dynamical
result α ¼ 1 needs to be done by taking into account the effect
of full RSB, as in the low temperature phase of the SK model
to the right of the full-RSB transition in Fig. 4(a). This
calculation has not been carried out yet (mainly because of its
algebraic complexity) and could represent a strong theoretical
test of the Edwards uniform measure at the mean-field level
for 1-SF metastable states.
It should be noted that the analog of PðhÞ is the distribution

of interparticle forces PðfÞ in the hard-sphere model, Eq. (48).
Now, in the hard-sphere model, a RS calculation of PðfÞ gives
Pð0Þ > 0 (Bo et al., 2014), i.e., a finite intercept at zero force,
and even the 1-RSB solution (i.e., the solution accounting for
just the first level in the hierarchical breaking of replica
symmetry) gives Pð0Þ > 0 as well (Parisi and Zamponi, 2010)
as discussed in Eq. (132). Only at the full-RSB level does
one find the correct behavior (Charbonneau et al., 2014b):
PðfÞ ∼ fθ with θ ¼ 0.42, Eq. (133), and Pð0Þ ¼ 0.
In light of these results, we expect that the full-RSB

calculation of PðhÞ for 1-SF in the SK model will be needed
as well to obtain the correct scaling. This calculation is based
on similar calculations done by Bray and Moore in Eastham
et al. (2006) that goes back to old controversies regarding
equiprobability of metastable states in the spin-glass field that
started with Roberts (1981); see Fig. 7 in Mézard and Parisi

Baule et al.: Edwards statistical mechanics for jammed …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015006-48



(2003). We recognize the fact that the behavior of PðfÞ is not a
direct measure of the equiprobability. However, PðfÞ is the
most accessible calculation that can be done to test the
predictions of Edwards theory.

VI. CONCLUSIONS AND OUTLOOK

More than 25 years after Edwards original hypothesis on
the entropy of granular matter, it becomes increasingly evident
that the consequences of Edwards simple statement are far
reaching. For one, it allows us to understand the properties of
jammed granular matter—one of the paradigms of athermal
matter states—by analogy with thermal equilibrium systems.
The first-order transition of jammed spheres identified within
Edwards thermodynamics (Jin and Makse, 2010) is reminis-
cent of the entropy induced phase transition of equilibrium
hard spheres, which is found at ϕ ¼ 0.494 and 0.545,
respectively. Despite this analogy, the physical origins of
these two transitions are fundamentally different: the equi-
librium phase transition is a consequence of the maximization
of the conventional entropy, while the transition at rcp of
jammed spheres is driven by the competition between volume
minimization and maximization of the entropy of jammed
configurations, Eq. (8).
Such an analogy can probably be extended to other

disorder-order phase transitions observed in equilibrium
systems. For example, anisotropic elongated particles exhibit
transitions between isotropic and nematic phases: for large α,
Onsager’s theory of equilibrium hard rods predicts a first-
order isotropic-nematic transition with a freezing point at the
rescaled density ϕα ¼ 3.29 and a melting point at ϕα ¼ 4.19
(Onsager, 1949). By analogy with the case of jammed spheres,
one might wonder whether packings of nonspherical particles
exhibit similar transitions that could be characterized in the
z–ϕ phase diagram. Packings of hard thin rods indeed satisfy a
scaling law, where the rcp has been experimentally identified
at ϕα ≈ 5.4 (Philipse, 1996). Dynamically, transitions to
orientationally ordered states can be induced in rod systems
by shaking (Yadav, Chastaing, and Kudrolli, 2013), but the
entropic characterization of such transitions remains an open
problem.
For colloidal suspensions of more complex shapes such

as polyhedra, both liquid crystalline as well as plastic
crystalline and even quasicrystalline phases have been found
(Haji-Akbari et al., 2009; Agarwal and Escobedo, 2011;
Damasceno, Engel, and Glotzer, 2012; Marechal and
Löwen, 2013). Entropic concepts based on shape are only
starting to be explored even for equilibrium systems
(Escobedo, 2014; van Anders et al., 2014; Cohen et al.,
2016). In the jammed regime, the behavior of packing density
as a function of shape has been shown to be exceedingly
complex (Chen et al., 2014). Edwards granular entropy might
be the key to understand such empirical data on a more
fundamental level.
Our approach based on the self-consistent equation (123)

can be applied to a large variety of both convex and nonconvex
shapes. The key is to parametrize the Voronoi boundary
between two such shapes, which allows for the calculation of
the Voronoi excluded volume and surface. In fact, analytical
expressions for the Voronoi boundary can be derived

following an exact algorithm for arbitrary shapes by decom-
posing the shape into overlapping and intersecting spheres
(see Figs. 17 and 25). Therefore, a systematic search for
maximally dense packings in the space of given object shapes
can be performed using our framework. Extensions to
mixtures and polydisperse packings can also be formulated.
This might elucidate, in particular, the validity of Ulam’s
conjecture that the sphere is the worst packing object in 3D
(Gardner, 2001), which has also been formulated in a random
version (Jiao and Torquato, 2011) locally around the sphere
shape (Kallus, 2016).
Thus, Edwards approach could help generally to elucidate

how macroscopic properties of granular matter arise from the
anisotropy of the constituents—one of the central questions in
present day materials science (Glotzer and Solomon, 2007).
A better understanding of this problem will facilitate the
engineering of new functional materials with particular
mechanical responses by tuning the shape of the building
blocks (Athanassiadis et al., 2014; Jaeger, 2015) or to new
ways to construct space-filling tilings (Herrmann, Mantica,
and Bessis, 1990; Andrade et al., 2005). Edwards statistical
mechanics might be the key to tackle these problems guided
by theory rather than direct simulations.
We postulate that a unifying theoretical framework can

predict not only the structural properties (volume fraction
and coordination number), but also mechanical properties
(vibrational density of states and yield stress) and dissipative
properties (damping) as a function of the shape and interaction
properties (e.g., friction) of the constitutive particles. If such
an approach is possible, then one could envision to span the
large parameter space of the problem from a theoretical point
of view to obtain predictions of optimal packings with desired
properties. The penalty for approaching the problem theoreti-
cally rather than by a direct numerical generation of the
packings as with reverse-engineering evolutionary algorithms
(Miskin and Jaeger, 2013) is that results are obtained
theoretically at the mean-field level. Thus, predictions of
the resulting optimal shapes can be only approximate.
On the other hand, it might be possible to develop a theory

versatile enough to encompass a large portion of the parameter
space which cannot be easily accessed by the direct simulation
of packing protocols in reverse engineering. Such a theory
might explore particles made by rigidly gluing spheres in
arbitrary shapes and also other generic shapes such as (a) the
union of spheres of an arbitrary radius, (b) the intersection of
spheres of an arbitrary radius leading to tetrahedral-like
particles, and in general (c) any irregular polyhedra; see
Fig. 17. Another advantage is the ability to possibly span over
more than one relevant property of granular materials, not only
density but also yield stress and dissipation. Furthermore, such
an approach would include interparticle friction, a property
that was not considered before, yet it is of crucial importance
in granular packings.
Additional insight can be provided by analytically solvable

models that take into account realistic excluded volume effects
due to nonspherical shapes. The recent solution of the “Paris
car parking problem” reveals the existence of two shape
universality classes that are manifest in different exponents in
the asymptotic approach to jamming (Baule, 2017).
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On the more fundamental side of things, the controversy on
the validity of Edwards statistical mechanics has been caused
by different interpretations of Edwards laconic statement
(Edwards, 1994): “We assume that when N grains occupy
a volume V they do so in such a way that all configurations are
equally weighted. We assume this; it is the analog of the
ergodic hypothesis of conventional thermal physics.”
With regard to the veracity of this statement, it is not

rigorously established yet not disproved. We have reviewed
the recent encouraging results of Newman and Stein (1999),
Charbonneau et al. (2014b), Sharma, Yeo, and Moore (2016),
and Martiniani et al. (2017) and have proposed a calculation
for the 1-SF states in the SK model. Besides, one must not be
fooled by believing that a statistical mechanics description of
granular media is the least well-founded branch of theoretical
physics, if only one remembers that almost every branch of
theoretical physics is lacking “rigorous proof,” although this is
not considered as an inappropriate foundation for such
branches. The main issue with Edwards statement, and the
reason why it will likely be hard to reach an end to the diatribe,
is that the statement, as it stands, is incomplete.
From a broad standpoint, the problem is whether it is

possible to describe the properties of the asymptotic states of
the dynamics by using only static features of the system. In
Edwards statement there is no reference at all to which are
those asymptotic dynamic states. To solve this issue, we have
proposed a rigorous definition of jammed states as those
configurations satisfying the geometrical hard-core and
mechanical force and torque balances constraints. Then
we further classified those jammed states on the basis of
their stability properties under k-particle displacements,
inspired by an analogous characterization of (energetically)
metastable states in spin glasses through the concept of
k-spin flips. With this definition of the asymptotic dynamic
states, we redefined (in italics) Edwards ensemble by the
following proposition:

“We assume that when N grains occupy a volume V
they do so in such a way that all stable jammed
configurations in a given k-PD jamming category
(i.e. at given volume fraction) are equally weighted.
We assume this; it is the analog of the ergodic
hypothesis of conventional thermal physics (and
also out-of-equilibrium spin glasses and hard-
sphere glasses).”

This statement also clarifies the role of the protocol, i.e., of
the dynamics, in the Edwards ensemble. A “legal” protocol is
the one for which the asymptotic dynamic states are in a given
k-PD core. This is, again, motivated by a spin-glass analogy.
In this case an example of correct protocol is, for instance, a
single-spin-flip Glauber dynamics, for which the asymptotic
dynamic states are in the 1-SF core and all have the same
energy. In the granular framework this is equivalent to say that
the asymptotic jammed states of a legal protocol are only the
k-PD metastable states (with a fixed k, for instance the 1-PD),
and they presumably have the same volume. Then the question
of whether these states are statistically equivalent (i.e.,
equiprobable) still remains open, and we have suggested a
model (SK) where an end-to-end comparison between the

results of dynamics and a static computation can be per-
formed, in principle, in an exact analytical way.
An “illegal” protocol is one that mixes different k-PD

metastable states, i.e., whose asymptotic dynamic states have
different values of k and hence different stability properties.
Nothing can be claimed for such illegal protocols. In the case
of legal protocols, it has been rigorously proven in spin glasses
that statistical equivalence of the asymptotic dynamic states of
the given protocol holds true, i.e., the k-SF visited by a given
dynamics are indeed equiprobable (Newman and Stein, 1999).
Whether this statement is also rigorous for jammed states is an
open question, but the correctness in spin glasses points
toward an affirmative answer. The stronger claim that the
asymptotic dynamic states are also the totality of k-PD (k-SF)
metastable states with given volume fraction (energy density)
is not analytically proved or disproved for any model we
are aware of.
Conversely, in the strong tapping regime, the statistical

equivalence of the asymptotic dynamic states cannot be
claimed. Notwithstanding, this does not preclude the use of
Edwards ensemble as a very principled approximation sup-
posedly more justified than other mean-field approaches.
A fortiori, the great advantage of Edwards approach is that
it leads to concrete quantitative predictions for realistic
packing scenarios. As discussed in detail in Sec. IV, the
volume ensemble in the Voronoi convention allows us to treat
packings of frictional and frictionless particles, adhesive and
nonadhesive, granular and colloidal sizes, monodisperse
and polydisperse, in 2D, 3D, and beyond, as well as spherical
and nonspherical shapes within a unified framework. Such a
comprehensive treatment is currently out of reach for any
other approach that can treat glassy and/or jammed systems
analytically, such as mode-coupling theory (Götze, 2009) or
replica theory (Parisi and Zamponi, 2010; Charbonneau et al.,
2014b). Moreover, the analytical efforts needed to extend
these theories to incorporate, for instance, friction or anisot-
ropies may be insurmountable. The verdict on Edwards
Alexandrian solution to this Gordian knot, as on every
physical theory, should be returned, ultimately, on the good-
ness of its predictions when compared with experimental data
and practical applications.
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APPENDIX A: BOUNDS ON THE AVERAGE
COORDINATION NUMBER

A packing is geometrically rigid if it cannot be deformed
under any translation or rotation of the particles without
deforming the particles or breaking any of the contacts
(Alexander, 1998). In d dimensions, there are d force balance
equations (2) and dðd − 1Þ=2 torque balance equations (3).
The number of equations can in general be associated with the
configurational degrees of freedom (dofs), so that per particle
we have in total df ¼ dðdþ 1Þ=2 configurational dofs.
Geometrical rigidity requires that all Ndf degrees of free-

dom in the packing are constrained by contacts (assuming
periodic boundary conditions). For frictional particles there
are d force components at contact and since all contacts are
shared by two particles we thus require Ndz=2 ≥ Ndf or

z ≥ 2df=d ¼ dþ 1: ðA1Þ

For frictionless particles there is only a single force compo-
nent at each contact due to Eq. (4): the normal unit vector
is fixed by di

a. The equivalent rigidity condition is thus
Nz=2 ≥ Ndf or

z ≥ 2df : ðA2Þ

For frictionless spheres the normal unit vector is parallel to di
a

so that Eqs. (3) are always trivially satisfied. In this case
df ¼ d, which corresponds to the translational dofs since
rotations are irrelevant.
If Eqs. (A1) and (A2) are not satisfied there exist zero

energy modes (so called floppy modes) that can deform the
packing without any energy cost. If the equalities hold, i.e.,
z ¼ dþ 1 for frictional particles and z ¼ 2df for frictionless
particles, the packing is isostatic under the naive Maxwell
counting argument.
On the other hand, we can obtain an upper bound on z by

imposing that a generic disordered packing will have the
minimal number of contacts. If any two particles precisely
touch at a single point without deformation, we find that a
single contact fixes one component of the vector connecting
the two center of masses. Overall, there are then Nz=2
constraints on the configurational dofs from touching con-
tacts. From the constraint Nz=2 ≤ Ndf we obtain

z ≤ 2df ðA3Þ

for both frictional and frictionless particles. Note that for
particles interacting with a soft potential the touching
condition can be satisfied only at zero pressure. Likewise,
realistic hard particles usually suffer slight deformations
when jammed, complicating the analysis (Roux, 2000;
Donev et al., 2007).

APPENDIX B: DENSITY OF STATES gðzÞ

The density of states gðzÞ can be calculated using analogies
with a quantum mechanical system in three steps as follows
(Song, Wang, and Makse, 2008; Wang et al., 2011):

(i) First, we consider that the packing of hard spheres is
jammed in a∞-PD configuration where there can be
no collective motion of any contacting subset of
particles leading to unjamming when including the
normal and tangential forces between the particles.
As discussed in Sec. II.B, this jammed state is the
ground state and corresponds to the collectively
jammed category proposed by Torquato and Stillinger
(2001). While the degrees of freedom are continuous,
the fact that the packing is collectively jammed
implies that the jammed configurations in the volume
space are not continuous. Otherwise there would be a
continuous transformation in the position space that
would unjam the system contradicting the fact that the
packing is collectively jammed. Thus, we consider
the fact that the configuration space of jammed matter
is discrete, since we cannot change one configuration
to another in a continuous way. A similar consid-
eration of discreteness was studied by Torquato and
Stillinger (2001).

(ii) Second, we refer to the dimension per particle of the
configuration space as D and consider that the
distance between two jammed configurations is
not broadly distributed (meaning that the average
distance is well defined). We call the typical (aver-
age) distance between configurations in the con-
figuration space as hz, and therefore the number of
configurations per particle is proportional to ðhzÞ−D.
The constant hz plays the role of Planck’s constant in
quantum mechanics which sets the discreteness of
the phase space via the uncertainty principle.

(iii) Third, we add z constraints per particle due to the fact
that the particle is jammed by z contacts. Thus, there
areNz position constraints (jrijj ¼ 2R) for a jammed
state of hard spheres as compared to the unjammed
“gas” state. Therefore, the number of degrees of
freedom is reduced to D − z, and the number of
configurations is then 1=ðhzÞD−z leading to

gðzÞ ¼ ðhzÞz−D: ðB1Þ

Note that the factor ðhzÞ−D will drop out when
performing ensemble averages. Physically,we expect
hz ≪ 1. The exact value of hz can be determined by a
fitting of the theoretical values to the simulation data,
but it is not important as long as we take the limit at
the end: hz → 0.

APPENDIX C: ALGORITHM TO CALCULATE VORONOI
BOUNDARIES ANALYTICALLY

Every segment of the Voronoi boundary (VB) arises due to
the Voronoi interaction between a particular sphere on each of
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the two particles, reducing the problem to identifying the
correct spheres that interact (see Fig. 25). The spheres that
interact are determined by separation lines given as the VBs
between the spheres in the filling. For dimers, there is one
separation line for each object, tesselating space into four
areas, in which only one interaction is correct [Fig. 25(a)]. The
dense overlap of spheres in spherocylinders leads to a line as
the effective Voronoi interaction at the center of the cylindrical
part. This line interaction has to be separated from the point
interactions due to the centers of the spherical caps as
indicated. Overall, the two separation lines for each object
lead to a tessellation of space into nine different areas, where
only one of the possible line-line, line-point, point-line, and
point-point interactions is possible [Fig. 25(b)].
The spherical decomposition of ellipsoidlike lens-shaped

particles is analogous to dimers, only now the opposite
sphere centers interact (“antipoints”). In addition, the positive

curvature at the intersection point leads to an additional line
interaction, which is a circle in 3D (a point in 2D) and
indicated here by two points. The separation lines are then
given by radial vectors through the intersection point or line.
The Voronoi interaction between two ellipsoids is thus given
by two pairs of two antipoints and a line, which is the same
class of interactions as spherocylinders. The different point
and line interactions are separated analogously to spherocy-
linders as shown in Fig. 25(c).
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(c) Ellipsoid (lens-shaped particle)

FIG. 25. Exact algorithm to obtain analytical expressions for the
VB from the construction of separation lines. (a) For dimers, the
two separation lines identify the correct surface out of four
possible ones. The pink part of the VB, e.g., is the VB between
the two upper spheres. (b) For spherocylinders, the line-line, line-
point, point-line, and point-point interactions lead to nine differ-
ent surfaces that are separated by four lines. The yellow part of
the VB, e.g., is due to the upper point on spherocylinder 1 and the
line of 2. Regions of line interactions are indicated by blue
shades. (c) For lens-shaped particles the separation lines are given
by radial vectors through the intersection line of the sphere
segments (shown as points in 2D). The different point and line
interactions are separated analogously to spherocylinders as
shown. From Baule et al., 2013.
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