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Symmetry group factorization reveals the
structure-function relation in the neural
connectome of Caenorhabditis elegans
Flaviano Morone1,2 & Hernán A. Makse1,2*

The neural connectome of the nematode Caenorhabditis elegans has been completely mapped,

yet in spite of being one of the smallest connectomes (302 neurons), the design principles

that explain how the connectome structure determines its function remain unknown. Here,

we find symmetries in the locomotion neural circuit of C. elegans, each characterized by its

own symmetry group which can be factorized into the direct product of normal subgroups.

The action of these normal subgroups partitions the connectome into sectors of neurons that

match broad functional categories. Furthermore, symmetry principles predict the existence of

novel finer structures inside these normal subgroups forming feedforward and recurrent

networks made of blocks of imprimitivity. These blocks constitute structures made of cir-

culant matrices nested in a hierarchy of block-circulant matrices, whose functionality is

understood in terms of neural processing filters responsible for fast processing of

information.
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There is growing consensus in present day complexity sci-
ence that functions of living networked systems are con-
trolled by the structure of interconnections between the

network components1–3. Under this assumption, the problem of
understanding how function emerges from structure4 can be cast
in terms of the network structure itself, and this problem is,
fundamentally, of a theoretical nature. Here we address this
problem by considering the connectome of the neural system of
the nematode C. elegans, a prototypical model connectome dis-
playing complex behavior5–11.

Specifically, we show that the building blocks of the locomotion
part of the connectome are mathematically defined via its ‘sym-
metry group’12. The implications of this result are two-fold. First,
we show that the symmetry group of locomotion circuits can be
broken down into a unique factorization as the direct product of
smaller ‘normal subgroups’12. These normal subgroups directly
determine the separation of neurons into sectors. The biological
significance of these sectors of neurons is measured by the fact
that these sectors match known functional categories of the
connectome. Second, we show that the sectors of neurons defined
by each normal subgroup of the connectome can be further
decomposed into ‘blocks of imprimitivity’12 made of ‘circulant’
matrices13. These circulant matrices are processing units encod-
ing for fast signal filtering and oscillations in the locomotion
function. Figure 1a–g defines the group theoretical concepts of
permutation symmetry, normal subgroup, block of imprimitivity
and circulant matrices needed to understand the theoretical basis
of the structure-function relation in the connectome that we
present here.

Our fundamental result is that symmetries of neural networks
have a direct biological meaning, which can be rigorously justified
using the mathematical formalism of symmetry groups. This
formalism makes possible to understand the significance of the
structure-function relationship: the origin of the locomotion
function in C. elegans is connected with the existence of sym-
metries which uniquely assign neurons to functional categories
defined by the mechanism of factorization of the symmetry
group. Therefore, the structure-function relationship theoretically
follows from a symmetry principle. Although the specific form of
the symmetry group is different in different functions, the basic
ideas and methods of our formalism are the same and can be
tested for any system. The symmetry group of a network has also
a strong impact on the dynamics of the system. That is, it
determines the synchronization of neurons belonging to the same
orbit defined by the symmetry group14,15. Furthermore, the form
of synchrony determined by the symmetries of the connectivity
structure is largely independent of the specific details of the
neural dynamics. Seen globally, network symmetries may help to
reveal the general principles underlying the mechanism of neural
coding engraved in the connectome.

Results
Neural connectome: symmetry groups. The neuronal network of
the hermaphrodite C. elegans contains 302 neurons, which are
individually identifiable, and the wiring diagram includes 890 gap
junctions and 6393 chemical synapses9. The number of neurons
across animals is very consistent 5,9, while the gap-junctions and
chemical synapses are reproducible within 25% variability from
animal to animal5,9,16,17. Due to its small size and relative com-
pleteness, the neural network of C. elegans has been a formidable
model system to search for design principles underpinning the
structural organization and functionality of neural networks5–11.

We examine the forward and backward locomotion functions
in C. elegans which have been well-characterized in the
literature5–7,10,11,18–20. The locomotion is supported by two main

functional classes of neurons called (1) command interneurons
and (2) motor neurons (in addition to sensory neurons which are
not studied here). The backward locomotion of the animal is
supported by the activation of interneurons AVA, AVE, and
AVD18 and AIB and RIM10, and motor neuron classes VA and
DA. Similarly, forward locomotion is supported by the activation
of motor neuron classes VB and DB through the interneuron
classes AVB and PVC5,6,10,18,19 and RIB10. We use the most up-
to-date connectome of gap-junctions and chemical synapses from
ref. 9 to construct the neural circuits of forward and backward
locomotion (details in Supplementary Note 1). We represent the
synaptic connectivity structure by the weighted adjacency matrix
Aij ≠ 0 if neurons i connects to j, and Aij ¼ 0 otherwise. Gap-
junctions are undirected links, Aij ¼ Aji, and chemical synapses
are directed.

To explain the concept of symmetries and the procedure for
finding the symmetry group, we first consider the circuit
comprising only the interneurons connected via gap-junctions
involved in the forward task (Fig. 1a, adjacency matrix in Fig. 1b,
weights on the links represent the number of connections
provided in ref. 9). Later, we will see how this circuit is integrated
in the full connectome.

This sub-circuit contains 4! ¼ 24 possible permutations of
its 4 neurons. Out of these 24, only 8 are permutation
symmetries as shown in Fig. 1c. A permutation symmetry, or
automorphism12,15,21,22, is a transformation defined as a
permutation of neurons which preserves the connectivity
structure A (see Supplementary Note 2 for detailed definition).
This means that before and after the application of an
automorphism, the neurons are connected exactly to the same
neurons. Mathematically, if P is an automorphism, then the
permuted adjacency matrix PAP�1 is equal to the original one,
PAP�1 ¼ A, or, equivalently, P and A commute with each other:

½P;A� � PA� AP ¼ 0 () P is a symmetry: ð1Þ
For instance, the permutation ABVL $ RIBR and ABVR $

RIBL represented by P6 in Fig. 1c is an automorphism since it
leaves the connectivity intact. The set of automorphisms forms
the symmetry group of the circuit, which, in this case, is the
dihedral group D8, which is the group of symmetries of a
square12. To be called a group of transformations, the
transformations need to satisfy four axioms: (1) the existence of
an inverse in the group, (2) the existence of an identity, (3) the
associative law, and (4) the composition law. In addition, if the
transformations are commutative, then the group is called
abelian.

Pseudosymmetries. The study of the full locomotion circuit
requires a generalization of the notion of network symmetry,
which we call ‘pseudosymmetry’. The concept of pseudosym-
metry arises naturally from the observation that connectomes
vary from animal to animal, so no two worms will ever have the
same connectome5,9,16,17. This variation is estimated experi-
mentally to be 25% of the total connections from worm to worm,
as reported in9 using data from5,16,17. We consider this variability
across individual connectomes as an intrinsic property consistent
with biological diversity and evolution. Furthermore, the number
of connections is subject to change from animal to animal
through plasticity, learning and memory23, so it cannot be
ignored. On the other hand, while connectomes vary from animal
to animal, functions developed from them, such as forward and
backward locomotion, are barely distinguishable across different
worms, and still show some vestige of an ideal symmetry. In fact,
the locomotion function is preserved despite the 25% variation in
the connectomes. Consequently, we expect that deviations from
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exact symmetries to be relatively ‘small’. Exact symmetries of the
connectome should be considered as an idealization, and we do
not expect them to be realized exactly.

Therefore, we consider pseudosymmetries of the connectome
rather than perfect symmetries. Unlike perfect symmetries,
defined by the commutator Eq. (1) and shown in the circuit of

Fig. 1a, the definition of pseudosymmetry depends on an
additional parameter, a small number ε> 0. This parameter
quantifies the uncertainty in the connectivity structure of the
connectome due to natural variations across animals, and, thus,
we call it the ‘uncertainty constant’ of the connectome. A
pseudosymmetry is an approximate automorphism Pε, in the
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sense that the commutator Eq. (1) is replaced by a non-zero but
small ε-norm (detailed definition in Supplementary Note 3):

jj½Pε;A�jj< εM () Pε is a pseudosymmetry; ð2Þ
where M is the total number of network links including weights.
Pε approximates an exact symmetry in the ideal limit ε ! 0. The
norm of the commutator, denoted as jj½Pε;A�jj, measures the
number of links where Pε and A fail to commute given an upper
limit tolerance ε in the fraction of links for the failure of
commutativity (a simple pseudosymmetry is exemplified in
Fig. 1d). The norm of the commutator in Eq. (2) is defined as
the L1 norm, denoted as jj½P;A�jj, and given by the following
equation:

jj½P;A�jj ¼ jjPA� APjj ¼ jjA� PAP�1jj ¼
X
ij

jAij � APðiÞPðjÞj;

ð3Þ
where the last equality follows from the fact that P is an isometry
(i.e., jjAjj ¼ jjPAP�1jj for any matrix A). We see that this
definition of pseudosymmetry via a commutator resembles the
uncertainty principle in quantum mechanics and, thus, perfect
symmetries correspond to the ‘classical limit’ of the
pseudosymmetries.

Equation (2) means that a pseudosymmetry must preserve at
least a fraction ð1� εÞ of network links. The set of pseudosymme-
tries of the connectome contains not only the symmetry group of
the connectome ðε ¼ 0Þ but it is augmented by the permutations
that are ‘almost’ automorphisms. We note that the set of
pseudosymmetries does not form a group by itself, since the
pseudosymmetries do not satisfy the composition law. For instance,
two pseudosymmetries (which by definition are below the thresh-
old ε) may be composed into a third pseudosymmetry that breaks
more than a fraction of ε contacts, and, thus, does not belong to the
original set of pseudosymmetries, violating composition.

Knowledge of the pseudosymmetries is particularly useful for
understanding the robustness of functions under small perturba-
tions of the connectome. This property makes it analogous to the
concept of pseudospectrum which tells how much the spectrum
of eigenvalues of a matrix moves respect to small perturbations,
see ref. 24. Simply put, if the set of pseudosymmetries is clustered
around the ideal symmetry group (i.e., the uncertainty constant is
small), network functions are robust under small perturbations.
Conversely, if it is widely spread, then functions are more likely to
be lost under small perturbations. Having all concepts at hand, we
move to discuss the whole forward and backward circuits and

their symmetries, which, hereafter, are meant to be pseudosym-
metries, although we keep using the shorthand ‘symmetry’ for
lexical convenience.

The forward gap-junction circuit is shown in Fig. 2. This
circuit has permutation symmetries, denoted as Fgap, most of
which can be spotted by eye in the layout displayed in the figure.
Figure 2a, b display the real circuit, the adjacency matrix and its
pseudosymmetries (details of calculations in Supplementary
Note 3). The uncertainty constants ε of these pseudosymmetries
are listed in Table 1 and fall below the upper experimental limit
of 25%. Thus, all pseudosymmetries have biological significance.
Figure 2c, d show an ideal circuit obtained by setting ε ¼ 0
compatible with the found pseudosymmetries (see Supplemen-
tary Note 3 for details on how to obtain the ideal symmetric
circuit).

Symmetry group factorization into normal subgroups. The
crucial property of the symmetry group Fgap is its factorization
into smaller ‘normal subgroups’. Its importance derives from the
fact that these normal subgroups match the known broad func-
tional categories of neurons involved in locomotion, such as
command interneurons, motor and touch neurons25. A ‘sub-
group’ H of a group G is a subset of transformations of G which
forms itself a group, i.e., the transformations satisfy the four
axioms of a group.

To understand what a normal subgroup is, we consider, for
instance, the automorphism that exchanges the motor neurons σ:
(VB2, DB3, DB2, VB1) $ (DB1, VB4, VB5, VB6) and forms
(with the identity) the dihedral group D1 (Fig. 2a, b).
Importantly, this automorphism acts independently only on
neurons (VB2, DB3, DB2, VB1, DB1, VB4, VB5, VB6), and leaves
the rest of the neurons of the connectome intact. Likewise, the
automorphism τ:VB7 $ VB3 forms another group by itself,
called the cyclic group of order 2, C2, and also acts independently
on this set of neurons and not on others.

The property of acting independently on a subset of neurons
means that D1 (and C2) forms itself a smaller group, called a
‘normal subgroup’ inside the full symmetry group Fgap. More
formally, a subgroup H is said to be normal in a group G if and
only if H commutes with every element g 2 G, i.e., ½g;H� ¼
gH�Hg ¼ 0 The formal definition of subgroup and normal
subgroup are explained in Supplementary Note 4, see ref. 12.

This property implies that the group Fgap can be factorized in a
unique way as a direct product of its two normal subgroups as:
D1 ´C2 (definition of factorization of a group in Supplementary

Fig. 1 Group theoretical definitions: automorphism, symmetry groups, pseudosymmetries, normal subgroups, and blocks of imprimitivity. a Circuit made of
gap-junction and only interneurons in the forward locomotion used to define an automorphism. These are permutation symmetries that leave the
adjacency structure invariant. These symmetries then convert to a system of imprimitivity when we integrate the circuit into the full locomotion
connectome. Nodes represent neurons and weighted links represent the number of gap-junctions connections between neurons from ref. 9. b Adjacency
matrix of the circuit in a. This matrix is composed of circulant matrices: a high-pass filter H ¼ circð0; 1Þ in the diagonal and an off-diagonal low-pass filter
L ¼ circð1; 1Þ. The full 4 ´4 matrix forms a block-circulant matrix BC ¼ bcircðH;LÞ13 (see Methods Section for definitions). c Symmetry group of the circuit
shown in a, called dihedral group D8, comprises 8 automorphisms out of the 4! = 24 possible permutations of neurons. We show each permutation matrix
P of each automorphism. d Pseudosymmetries capture inherent variabilities in the connectome from animal to animal. An example pseudosymmetry is
shown Pε ¼ DB5$ DB6 that breaks one link to AVBR over 18 total weighted links, giving ε ¼ 1=18 ¼ 5:5%. e Definition of normal subgroup. A subgroup H
is said to be normal in a group G if and only if H commutes with every element g 2 G, that is: ½g;H� ¼ gH�Hg ¼ 0 (see Supplementary Note 4 for a
detailed explanation). f Definition of blocks of imprimitivity and system of imprimitivity. Simply put, a set of nodes is called a block (of imprimitivity) if all
nodes in this set always ‘move together’ under any automorphism of the symmetry group. A set of blocks with such a property is thus called a system of
imprimitivity (see Supplementary Note 7 for a formal definition). g Definition of circulant matrix and circular convolution. Matrix F appears in the forward
gap-junction locomotion circuit and is called a circulant matrix. This matrix has a peculiar pattern where each row is a shift to the right by one entry of the
previous row. Multiplication of F by a vector x gives rise to a famous operation called a circular convolution, which is used in many applications, ranging
from digital signal processing, image compression, and cryptography to number theory, theoretical physics and engineering, often in connection with
discrete and fast Fourier transforms, as explained in Supplementary Note 8
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Note 4, see ref. 12). The significance of the normal subgroup is
that the normal transformations identify a unique and non-
overlaping subset of neurons that are moved by each normal
subgroup. This set of neurons are called the ‘sector’ associated
with the normal subgroup. Since each normal subgroup acts only
on an independent sector, the factorization of groups into normal
subgroups leads also to a partition of neurons into unique disjoint
sectors.

In simple terms, this means that when an automorphism in a
normal subgroup is applied to the network, only the neurons in
the sector of the normal subgroup are permuted, while the rest of
the neurons that are outside the sector are not affected. Thus, we
say that the normal subgroup automorphisms act only on the
neurons belonging to its sector providing a unique separation and
classification of the neurons and the associated factorization of
the symmetry group. This factorization is mathematically

c
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analogous to the unique factorization of natural numbers into
primes, and this notion is extended to group theory for those
finite groups that can be factorized into ‘prime’ normal
subgroups, as it is the case of the connectome.

The symmetry group Fgap is factorized as a direct product of 6
normal subgroups as:

Fgap ¼ ½C2 ´C2� ´ ½S5 ´D1 ´C2 ´C2� : ð4Þ

Each subgroup acts on a non-overlapping independent sector of
neurons as indicated in Fig. 2 (see also Supplementary Note 5).
Table 1 lists the uncertainty constant for each subgroup of

pseudosymmetries indicating that all ε are small and below the
experimental upper limit 25%5,9,16,17.

The factorization of the symmetry group Fgap in Eq. (4) is
significant because it determines a partition of the circuit into
sectors that match specific categories of neurons25. To define
the functional categories or classes of neurons we follow the
literature where functions have been determined experimentally
and compiled at the WormAtlas25. Broad functional categories
of neurons are provided at http://www.wormatlas.org/
hermaphrodite/nervous/Neuroframeset.html, Chapter 2.2. A clas-
sification for every neuron into four broad neuron categories
follows: (1) motor neurons, (2) sensory neurons, (3) interneurons,
and (4) polymodal neurons. A function is assigned to each neuron
based on this experimental classification into neuron categories.
This classification is displayed in Supplementary Tables 1 and 2,
and discussed in Supplementary Note 6. These categories
represent the ground truth to test the predictions of our theory.

Specifically, the factor ½C2 ´C2� corresponds to the command
interneuron category and comprises command interneurons
which drive the forward locomotion: AVBL, ABVR, and RIBL,
RIBR. The entire motor class is associated to an entire
independent factor ½S5 ´D1 ´C2 ´C2�, and includes all motor
neurons innervating the muscle cells responsible for the
undulatory motion of C. elegans.

Applying the same symmetry procedure, we find that all
forward/backward gap-junction/chemical synapse circuits form
symmetry groups, and these groups can be factorized into normal
subgroups in the same way as in Eq. (4) (see Figs. 3 and 4 and
Supplementary Note 5 for details). The correspondence between
neuron sectors from group theory and known categories of
neurons occurs consistently across all circuits, and further
includes a subgroup related to touch sensitivity6 in the forward
(PVCL, PVCR, Fig. 4a) and backward (AVDL, AVDR, Fig. 4c)
chemical synaptic circuits. The full list of sectors, normal
subgroups and uncertainty constants of the pseudosymmetries
are provided in Table 1.

The normal subgroups partition the connectome into non-
overlapping functional sector of neurons, thus realizing the
segregation of function. At the same time, the sectors remain
connected in the connectome without breaking the symmetries,
thus fulfilling the integration of function into a globally connected
network. Thus, the symmetric subgroup organization of the
connectome provides an elegant solution to the conundrum of
functional specialization in the presence of a global integration of
information necessary for efficient coherent function26, a
profound issue in neuroscience

While group factorization can distinguish different classes of
neurons, this distinction may also be seen in some cases by
directly looking at the adjacency matrix: for instance in Fig. 2b
the AVB interneurons are heavily connected hub neurons which
could be, in principle, also distinguished by any connectivity
measure. That is, the neurons AVBL and AVBR are hubs with
large degree k ¼ 18 and are easily distinguished from the rest of

Fig. 2 Symmetry group Fgap of the forward gap-junction circuit. a Circuit from ref. 9. Pseudosymmetries Pε act on distinct sectors of neurons indicated by
different colors that lead to direct product factorization of the symmetry group into normal subgroups. The normal subgroups sectors of neurons match the
broad classification of command interneurons and motor neurons from the Wormatlas25. b Adjacency matrix of (a) showing the normal subgroup
structure and its matching with broad neuronal classes. c Idealization of the circuit obtained from a by ε ! 0 leading to perfect symmetries (see
Supplementary Note 3). We highlight the two 4-cycles across B1: VB2! DB3 ! DB2 ! VB1 ! VB2 and its conjugate B2: DB1 ! VB4 ! VB5! VB6 !
VB4 that give rise to the circulant matrix structure highlighted in the checker-board pattern in d of both imprimitive blocks. d Adjacency matrix of the ideal
circuit in c. We highlight the two imprimitive blocks B1 ¼ (VB2, DB3, DB2, VB1) and B2 ¼ (DB1, VB4, VB5, VB6) mentioned in the text and its circulant
structure in the normal subgroup D1. The other normal subgroups are also described by circulant blocks and correspond to imprimitive blocks:
B3;B4;B5;B6;B7, as indicated. Some of these structures also form block-circulant matrices. Each block of the adjacency matrix A performs a fundamental
signal processing task

Table 1 Pseudosymmetries of the locomotion circuit

ε (%) Subgroup p-value

Pseudosymmetry-Forward gap-junction
(RIBL, RIBR) 0.0% C2 0.001
(VB3, VB7) 5.3% C2 0.02
(VB8, VB9) 9.6 % C2 0.004
(AVBL, AVBR) 24.5% C2 0.0007
(DB5, DB6, DB7,
VB10, VB11)

5.5 % S5 0.0002

(DB1, VB2, DB2, VB5, DB3,
VB4, VB1, VB6)

23.4% D1 0.00001

Pseudosymmetry-Backward gap-junction
(AIBL, AIBR, RIML, RIMR) 1.5% D1 0.00001
(DA8, DA9, DA2, VA1,
DA1, DA4)

6.9% D6 <10�6

(AVEL, AVER) 1.5% C2 0.005
(VA4, VA5) 3.8% C2 0.005
(VA2, VA3, VA6, VA7,
VA8, VA9, VA10, VA11,
VA12, DA3, DA6, DA7)

13.8% S12 <10�6

Pseudosymmetry-Forward chemical synapse
(VB3, VB4, VB5, VB10,
VB11, DB2, DB4, DB6,
DB7, DB8)

3.8% S10 0.014

(VB6, VB7, VB8, VB9) 3.8% D1 0.0012
(PVCL, PVCR) 3.8% C2 0.0006
(AVBL, AVBR, RIBL, RIBR) 7.6% D1 <10�6

Pseudosymmetry-Backward chemical synapse
(VA2, VA3, VA4, VA5) 4.5% D1 0.002
(VA8, VA9) 0.8% C2 9 ´ 10�5

(DA5, DA8, DA9,
VA6, VA11)

10.8% S5 <10�6

(AVAL, AVAR) 21.5% C2 4 ´ 10�6

(AVEL, AVER) 15.5% C2 8 ´ 10�5

(AVDL, AVDR) 24.5% C2 0.004
(DA1, DA2, DA3, DA4) 2.3% S4 4 ´ 10�6

(VA10, DA6, DA7) 3.8% S3 0.002

For each subgroup we show the uncertainty constant ε, which is below the 25% uncertainty
given by the animal to animal experimental variability, and therefore the pseudosymmetries
have biological significance. The provided p-value indicates that the pseudosymmetries have
also statistical significance
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the neurons which have generally smaller degree. However, in
general, having the same degree does not imply that the neurons
belong to the same subgroup. Thus, the connectivity measure
alone may not fully capture the symmetry groups that we find.

For instance, neurons can be in the same sector subgroup and
at the same time could, in principle, have different degree. This
situation is seen for example in the neurons of the forward motor
sector subgroup D1 in Fig. 2a, c. In the circuit of Fig. 2c, the
neurons in D1 have different degree: VB5, DB2 VB4 and DB3
with k ¼ 5, VB1 and VB6 with k ¼ 3, VB2 and DB1 with k ¼ 8.

Thus, even though these neurons have different degree, they
belong to the same subgroup and functional class: the motor
sector subgroup D1. In general, the degree alone is not enough to
separate the neurons in subgroups and known classes.

Furthermore, Fig. 2b shows that the pair (VB8, VB9) has the
same connectivity as the pair (RIBL, RIBR), and thus they could
be classified in the same category as either motor neuron (with
VB) or interneurons (with RIB). If we consider the neurons
unweighted they merge into the same subgroup and they should
perform the same function. However, considering the weights,
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Fig. 3 Symmetry group Bgap of the backward gap-junction circuit. a The real circuits and (b) its adjacency matrix. The symmetry group is factorized as a
direct product of normal subgroups: Bgap ¼ ½C2 ´C2 ´D1� ´ ½S12 ´D6 ´C2�, which leads to a partition of neurons in two sectors that match the command
and motor sectors known experimentally, as indicated. c Ideal circuit and (d) adjacency matrix highlighting the primitive and imprimitive blocks and their
circulant structures from B1 to B9
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Fig. 4 Symmetry groups Fch and Bch of the chemical synapse forward and backward circuits. a Forward locomotor chemical synapse circuit and (b)
its adjacency matrix (ideal circuits, real circuits in Supplementary Figs. 5 and 6). The symmetry group Fch is factorized into the direct product of
command, motor, and touch subgroups as Fch ¼ C2 ´ ½D1� ´ ½S10 ´D1�, which, in turn, split up the circuits into independent sectors of neurons
matching different functions and include also the neuron touch class PVC (forward) and AVD (backward). c The backward circuit factorizes as Bch ¼
C2 ´ ½C2 ´C2� ´ ½S5 ´ S4 ´ S3 ´D1 ´C2 ´C2�: We show the ideal circuit and (d) its adjacency matrix. For simplicity we plot only the interneurons that
connect to the motor neurons. Full circuit in SM Fig. 6. All neurotransmitters are cholinergic and excitatory (ACh) except for RIM which uses
neurotransmitter Glutamate and Tyramine and AIB which is glutamatergic (see Supplementary Note 6). These different types of synaptic interactions
respect the symmetries of the circuits, see Supplementary Note 5
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there is an asymmetry, since both, VB9 and VB8 have 6 and 7
connections to AVBL and AVBR respectively, while RIBL and
RIBR have one connection each to both neurons (see Supple-
mentary Fig. 3). Indeed, the WormAtlas classifies RIBL and RIBR
as interneurons25, thus, we classify these pairs of neurons in
different classes. The asymmetry in the weights might the reason
why the experiments compiled at the WormAtlas find that these
two set of neurons may work in different categories: motor and
interneuron. In general, it is possible for a neuron to be involved
in multiple functions. The case of polymodal neurons can be
treated theoretically by generalizing the direct-product factoriza-
tion to semidirect-product factorization of normal and non-
normal subgroups. Semi-direct product factorization could
capture overlapping sectors of neurons and multi-functionality
which are more prevalent across the connectome beyond
locomotion.

Statistical significance of the symmetry subgroups. To establish
the degree to which the symmetries of the locomotion sub-
circuits are statistically significant, we compare the symmetry
subgroups against control random sub-circuits. Indeed, a high
enough value of ϵ would yield an approximate symmetric version
of any arbitrary circuit: a fully random non-symmetric con-
nectome implies ϵ ¼ 1, and a perfect symmetric one ϵ ¼ 0. In
between, all networks can be classified by their ϵ-value. Thus, it is
important that not only ϵ be smaller than the experimental
variability ϵ< 25%, but also be statistically significant. Statistical
metrics to evaluate the symmetries are p-value statistical tests to
compare results with a randomized null model preserving the
degree sequence. Specifically, the p-value of a pseudo-symmetry
subgroup Gϵ is defined as the probability to find a subgroup Gϵ�
with ϵ� � ϵ in a randomized circuit with the same degree
sequence as the real circuit. The results of the p-values are
summarized in Table 1 for each subgroup, showing that pseu-
dosymmetry subgroups are, indeed, statistically significant.

Comparison with other methods to find functional modules. It
is interesting to compare the functional partition obtained by the
symmetries of the connectome with typical modularity detection
algorithms which are widely used to identify functional modules
in biological networks27. Indeed, there is a large body of work
which examines the connectivity of biological networks to
algorithmically classify the constituent neurons into modules and
compare those modules to known classifications. Therefore,
below we investigate how symmetry detected sectors compare to
existing algorithms such as modularity and community detection,
and other centrality measures.

We run the Louvain community detection algorithm28 on the
forward and backward circuit and find the modular partition seen
in Fig. 5. We find that modules identified by the Louvain
algorithm do not generally capture the functional modules
identified by symmetry subgroups, nor the experimental
classification into neural functions.

Typically, the modularity algorithm assigns to the same
functional module a hub-like interneuron AVBR together with
its connected neurons in the motor sector (see Fig. 5a), since
these neurons are all highly connected. Thus, the modularity
algorithm will typically mix the interneuron and motor sectors.
Symmetry factorization into normal subgroups, on the other
hand, correctly classifies AVBL and AVBR separately from the
VB and DB neurons in the motor sector, even though these
sectors are well connected. Similar results are obtained when we
use other network centralities: Fig. 5b, d show the modules
obtained by ranking neurons according to eigenvector centrality.

We find that such centrality measure does not capture the
partition into symmetry sectors nor the functional classes.

A recurrent and feedforward neural network made of blocks of
imprimitivity and circulant matrices. The data analyzed so far
indicate that there is still a more refined structure inside the broad
functional categories of motor, command and touch, that requires
further exploration. For instance, the motor class of forward gap
junctions (Fig. 2) consists of 4 different normal subgroups:
½S5 ´D1 ´C2 ´C2�. Next, we show that the functionality of this
finer structure can be systematically obtained through a more
refined group theoretical concept of ‘block of imprimitivity’12,
which identifies the fundamental processing units of the con-
nectome and naturally leads to a novel functionality in terms of
mechanism of neural coding.

A block of imprimitivity is a set of neurons that, under the
action of the automorphisms of a subgroup, is completely
mapped onto itself or it is mapped onto a completely disjoint set
of neurons (formal definition of block of imprimitivity in
Supplementary Note 7, see12, and Fig. 1f). For instance, consider
the subgroup D1 of the forward gap-junction circuit (Fig. 2)
which consists of the automorphism σ 2 D1 which acts on the
sector (VB2, DB3, DB2, VB1, DB1, VB4, VB5, VB6). The subset
of neurons highlighted in green in Fig. 2c, B1 ¼ (VB2, DB3, DB2,
VB1), forms a block of imprimitivity since σ moves this set into a
different one, highlighted in black, B2 ¼ (DB1, VB4, VB5, VB6),
which is the other block of imprimitivity of the sector and a
conjugate block of B1. These two blocks form the so-called system
of imprimitivity, a fundamental concept in group theory12,29. The
other normal subgroups of the forward circuit do not have a
nontrivial block system of imprimitivity, hence they are said to be
primitive (Supplementary Note 712).

The resulting block partition of each adjacency matrix is shown
in Figs. 2d, 3d and 4b, d. These systems of imprimitivity identify
new functionalities in each locomotion circuit. Specifically, we
find that the system of imprimitivity of each locomotion circuit is
formed by blocks represented by circulant matrices13. A circulant
matrix is a square matrix where each row is a cycle shift to the
right of the row above it, and wrapped around13 (see Methods
Section for definition). In alignment with pseudosymmetries, the
circulant matrices are interpreted as pseudocirculant matrices of
the real circuit. A pseudocirculant matrix differs from a circulant
matrix by a fraction ε of their links. We note that this partition
into blocks of imprimitivity is not unique. For instance, another
possible block system corresponds to a partition made by the
orbits.

Circulant matrices are well-known in the field of digital signal
processing, recurrent and feedforward neural networks4 and
cryptography, and are widely used as efficient linear filters to
solve a variety of tasks in digital image processing, most notably
as edge-detection and signal compression4,30, but also in
tracking31, voice recognition, and computer vision32. Circulant
matrices are the kernels of discrete convolutions and are used in
discrete Fourier transform to solve efficiently systems of linear
equations in nearly linear time13 that significantly speed up the
OðN3Þ arithmetic complexity of Gaussian elimination.

We find different types of circulant matrices in the connectome
which are, in turn, nested into larger block-circulant matrices (see
definitions in Figs. 1b and 2d and Methods Section). Two
circulant matrices occur consistently in all locomotion circuits
and act as a ‘high-pass’ filter:

H ¼ circð0; 1Þ ¼ 0 1

1 0

� �
; ð5Þ
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and a ‘low-pass’ filter:

L ¼ circð1; 1Þ ¼ 1 1

1 1

� �
: ð6Þ

The third type of circulant matrix represents a 4-cycle

permutation:

F ¼ circð0; 1; 0; 1Þ ¼

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2
6664

3
7775; ð7Þ

and acts on the blocks of imprimitivity B1 and B2 in the motor
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Fig. 5 Symmetry vs. other methods. We compare the functional classes obtained from symmetries with modularity detection algorithms27,28 and a typical
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sector of the forward gap-junction circuit (Figs. 2c, d). Intuitively,
each circulant matrix represents a cycle embedded in the
subgroup sector as seen in Fig. 2c for B1:VB2 ! DB3 ! DB2
! VB1 ! VB2. In the same figure we see the 4-cycle of the
conjugate block B2.

The 2 ´ 2 circulant matrix H in Eq. 5 is quite ubiquitous and
corresponds to a 2-cycle (or transposition). For instance, the 2-
cycle VB8 ! VB9 ! VB8 in the forward gap junction circuit
Fig. 2c forms a circulant matrix of the form given by H. This is
also a block of imprimitivity, since this block is the only one
inside the subgroup C2. Subgroup S5 also forms a circulant
matrix, although a trivial one in this case since all its elements
are zero.

It is interesting to see that the circulant matrices are nested into
an structure of block-circulant matrices (see Methods Section for
definition), suggesting a hierarchical organization of building
blocks in the connectome. Typical block-circulant matrices are of
the form13:

BC ¼ bcircðH;LÞ ¼ H L
L H

� �
¼

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

2
6664

3
7775: ð8Þ

For instance, this block-circulant matrix appears in the command
sector of the forward gap junction circuit between the neurons
RIBL, RIBR, AVBL, AVBR. This is seen in Fig. 1b and also in
Fig. 2d. It is interesting to note that when we analyze the group
structure of the interneuron only circuit of gap junctions, then we
find the group structure shown in Fig. 1b. When we integrate this
circuit in the full forward circuit, then this group becomes a
system of imprimitivity shown as B6 and B7 in Fig. 2d. This is a
block-circulant matrix made itself by circulant matrices forming a
nested hierarchical structure. This hierarchical nestedness is
repeated across all the connectome.

A block-circulant structure is formed by the imprimitive blocks
B1 and B2 in the same forward gap junction circuit, Fig. 2d. In
this case, we have:

A1 ¼ F ¼ circð0; 1; 0; 1Þ ¼

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2
6664

3
7775; and

A2 ¼

0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0

2
6664

3
7775;

ð9Þ

and both B1 and B2 combine into a block-circulant matrix of the
form:

BC ¼ bcircðA1;A2Þ: ð10Þ
Also, B6 and B7 in the backward gap junction circuit of Fig. 3d
composed of neurons AIBL, AIBR, RIML, RIMR form a block-
circulant matrix

BC ¼ bcircðA1;A2Þ ð11Þ
with

A1 ¼ circð0; 0Þ and A2 ¼ circð1; 0Þ ¼ 1 0

0 1

� �
: ð12Þ

These results suggest that we can think of the connectome as a
feedforward network made of interneurons that feeds a recurrent
network in the motor system4 made of a system of sensing

operators, each represented by an imprimitive block with a
circulant structure. Such a feed-forward and recurrent network
architecture is universally seen across many neural systems and it
is used as a model of the receptive fields in the primary visual
cortex4. Such a system can be modeled by a feedforward matrix
W and a recurrent network M processing the input activity u to
the output v as a linear filter, see Dayan and Abbott4:

τ
dv
dt

¼ �v þMv þWu; ð13Þ

where τ is a time characteristic. The crucial property of this
system is that the matrix M contains loops in the network.

For instance, in the case of the gap junction forward circuit
(Fig. 2), the AVBL and AVBR interneurons act as the input layer
u ¼ ðuABVL; uABVRÞT which is first processed by the feedforward
matrix represented by a fully connected matrix:

W ¼

1 1

1 1

1 1

1 1

2
6664

3
7775; ð14Þ

whose output is then processed by the recurrent network
in the motor sector by, for instance, processing the signal
in the motor neurons of the imprimitivity block B1; v ¼
ðvV B2; vDB3; vDB2; vV B1ÞT by the recurrent circulant matrix M ¼
F ¼ circð0; 1; 0; 1Þ from Eq. (8). The same signal processing
occurs in the feedforward and recurrent network formed by the
conjugate motor imprimitive block B2. Similar structure is
seeing in the backward circuit Fig. 3 with AVAL-AVAR feed-
forwarding information into the recurrent circulant blocks in
the motor sector. The chemical circuits also contain such a
feed-forward and recurrent structure: PVCL-PVCR feeds the
forward motor circulant blocks (Fig. 4a) and AVE-AVD-AVA
feed the backward motor circulant blocks (Fig. 4c).

Using the language of signal processing in computational
neuroscience, these recurrent networks are analogous to the core
of receptive fields that process information in the visual cortex,
see Dayan & Abbott4. For instance a widely used filter in signal
processing is the edge-detector4,30 which employs a circulant
matrix defined by M ¼ circð0; 1;�1; 0; � � � ; 0Þ to compute a
‘derivative’ of the spatial signal and detect sharp edges4. Another
typical computation is performed by a circulant matrix M ¼
circð0; 1;�2; 1; 0; � � � ; 0Þ to represent a second derivative of the
signal, and so on.

In the case of the connectome, one possible interpretation of
the purpose of the found circulant filters is to separate one band
of frequencies from another and perform signal compression. The
high-pass filter H is used to block the low frequency content of
the neural signal, while the low-pass filter eliminates the high
frequencies. The F matrix is a translational invariant filter to
sample the signal as a way of reducing the size of the signal
(compression) without overly reducing its information content to
process the undulatory motion of locomotion according to its
eigenvalues.

Roughly speaking, the filter H measures the self-similarity on
either side of the center point and the output will be maximal
when each the two points are equal to each other. The filter F
operates on the inputs of the imprimitive systems of the forward
circuit. The fact that this matrix appears only in the forward
circuit suggests that it might be an important controller in the
undulatory motion. This can be seen from the eigenvalues λi of

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12675-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4961 | https://doi.org/10.1038/s41467-019-12675-8 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


this circulant matrix and their eigenvectors vi:

λ1 ¼ �2; v1 ¼
1
2
ð�1; 1;�1; 1Þ;

λ2 ¼ 2; v2 ¼
1
2
ð1; 1; 1; 1Þ;

λ3 ¼ 0; v3 ¼
1ffiffiffi
2

p ð0;�1; 0; 1Þ;

λ4 ¼ 0; v4 ¼
1ffiffiffi
2

p ð�1; 0; 1; 0Þ;

ð15Þ

which determine the solution of Eq. 134 and act by filtering out
two modes and allow oscillations between λ1 and λ2. Thus, the
circulant blocks act as information processing units in the
recurrent network that are basically filters to perform specific
signal processing operations (see Supplementary Note 8).

The association of the circulant processing units with the
blocks of imprimitivity completes the operational definition of the
locomotor function determined by the decomposition properties
of its symmetry group, and in turn, unveil and classify hitherto
hidden mechanisms of the neural code. The existence of the
predicted blocks can be directly tested in future experiments by
measuring how the imprimitive blocks process the neural signal
in real time according to their circulant filters.

Discussion
Overall, the structure-function relation in the connectome can be
seen as a refining process of nested symmetry building blocks.
The primary building blocks are defined through the mechanism
of direct product factorization of normal subgroups and provide a
rigorous characterization of the network connectivity structure,
and a simple interpretation of its major functions into neural
classes. These major sectors are comprised of secondary topolo-
gical structures involved in signal processing which refine the
primary normal subgroups into irreducible blocks of
imprimitivity.

The factorization of the symmetry groups of the connectome
has its analogy with integers and primes as every integer can be
factorized into a unique product of prime numbers as stated in
the fundamental theorem of arithmetic. This factorization is
also analogous to that of the Standard Model of particle phy-
sics29. In theoretical physics, automorphisms describe the
symmetries of elementary particles and forces29,33, as well as
atoms, molecules and phases of matter34. For example, funda-
mental forces in particle physics are based on symmetry prin-
ciples incorporated through a description of the gauge
symmetry group of the Lagrangian factorized into three sub-
groups as Uð1Þ ´ SUð2Þ ´ SUð3Þ, where SUðNÞ is the special
unitary group of N ´N unitary matrices with determinant 1,
and Uð1Þ is the group consisting of all complex numbers with
absolute value 1. In this case, each subgroup determines a dif-
ferent force, namely the electroweak and strong forces, and the
generators of these symmetry subgroups are the particles.
Analogously, the functions of locomotion are based on the
symmetries of the connectome through the symmetry group
which is factorized in general as T ´C ´M where each sym-
metry subgroup determines a different function. For instance,
the symmetry group of the chemical forward circuit splits as:
Fch ¼ TFch

´CFch
´MFch

.
In a milestone in the history of mathematics, all finite simple

groups have been discovered and classified into 3 major classes:
cyclic, alternating or Lie type plus 26 extra classes of rare sporadic
groups35. Out this variety, the locomotion connectome contains
only cyclic groups. It would be fascinating to discover other
naturally occurring simple groups for other functions in different

biological networks. Results presented elsewhere indicate that
symmetries extend to the full connectome and also to genetic
networks36, and they are naturally related to neural synchroni-
zation. Thus, the principle of symmetry provides a rigorous
mathematical characterization of the structural and functional
organization of connectomes down to their information-
processing units. This hierarchical symmetric architecture may
also serve as guidance to design more efficient artificial neural
networks inspired by natural systems.

Methods
Circulant and block-circulant matrices in digital signal processing and the
connectome. We find that the system of imprimitivity of the locomotion circuits is
comprised of a specific type of blocks, which are represented by circulant matri-
ces13, https://en.wikipedia.org/wiki/Circulant_matrix.

It is worth noting that there is a priori no reason for the occurrence of this
specific type of matrices in the system of imprimitivity. That is, a symmetry group
may have a system of imprimitivity that is not composed of circulant matrices.
Thus, there are two independent results: first, the connectome is broken down into
a system of imprimitivity. Second, the imprimitive blocks have the shape of
circulant matrices and block circulant matrices.

A circulant matrix P‘ of order ‘ is a square matrix of the form13:

P‘ ¼ circðc1; c2; ¼ ; c‘Þ ¼

c1 c2 c3 ¼ c‘
c‘ c1 c2 ¼ c‘�1

� � �
� � �
c2 c3 c4 ¼ c1

2
6666664

3
7777775
: ð16Þ

The elements of each row are the same as those from the previous row, but are
shifted one position to the right and wrapped around. The circulant matrix is thus
determined by the first row or column and therefore it is denoted by13:
P‘ ¼ circðc1; c2; ¼ ; c‘Þ.

We also find block-circulant matrices in the connectome which are defined as
follows. Block-circulant matrices are an extension of circulant matrices where the
elements ci are now replaced by matrices themself Ai . Let A1;A2; ¼ ;Am be square
matrices of order n. A block-circulant matrix of order mn is the form13:

BC ¼ bcircðA1;A2; ¼ ;AmÞ ¼

A1 A2 A3 ¼ Am

Am A1 A2 ¼ Am�1

� � �
� � �
A2 A3 A4 ¼ A1

2
6666664

3
7777775
; ð17Þ

and when n ¼ 1, the block-circulant becomes a circulant matrix. The matrices Ai
may not need to be necessarily circulant. However, the connectome presents only
circulant matrices as Ai , thus creating a hierarchical nested structure of circulant
blocks made of circulant matrices themself.

The graph that results from a circulant matrix is called a circulant graph,
https://en.wikipedia.org/wiki/Circulant_graph. Circulant matrices are determined
by the first row and every row is the cyclic shift of the row above it. A circulant
matrix is a special kind of Toeplitz matrix with the additional property that
ci ¼ ciþ‘

13.
Repeated application of P‘ on itself generates an abelian group called cyclic

group of order ‘, denoted as C . Moreover, any subgroup of C is also cyclic. The
important point is that whenever the symmetry group of a network contains a
circulant permutation matrix like P‘ in Eq. (16), then the adjacency matrix A, or a
piece of it, inherits from P‘ the same circulant structure.

In the locomotion neural circuits studied in this work, we find 3 types of
circulant matrices: H;L; and F . In the language of signal processing, the matrix H
is a spatial high-pass filter, used to block the low frequency content of the signal;
and L is a spatial low-pass filter, which instead eliminates the high frequencies.
These are the two most common linear filters used in image processing. The filter
F is the kernel of the fast Fourier transform (see Supplementary Note 8). It can be
thought as a translational invariant filter to sample the signal as a way of reducing
the size of the signal without overly reducing its information content. While H and
L appear consistently across all circuits, the circulant F matrix occurs only in the
forward gap-junction circuit. The low pass filter selects the ‘bulk’ of the
information, while the ‘high-pass’ picks out finer details.

This structure shows how the connectome acts as a signal processing network
within a hierarchical structure that starts at the symmetry group level, which is
then broken down into subgroups and further broken into the system of
imprimitivity which represents the irreducible building blocks.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
Connectome data are available in the public domain at http://www.wormatlas.org and
codes at http://www.kcorelab.org and http://github.com/Makselab.
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Supplementary Information

Symmetry group factorization reveals the structure-function relation in the

neural connectome of Caenorhabditis elegans

Flaviano Morone and Hernán A. Makse

Supplementary Note 1 - C. elegans connectome

We downloaded the most updated connectome of the hermaphrodite worm Caenorhab-

ditis elegans (C. elegans) from the curated database of Varshney et al. [1] which is freely

available through the Wormatlas: Altun, Z. F., Hall, D. H. (2002-2006) Wormatlas [2].

Available: http://www.wormatlas.org. Varshney et al. report a wiring diagram based

on the original data from White et al. [3] augmented to include new serial section electron

microscopy reconstructions. The connectome is composed of gap junctions which provide di-

rect electrical couplings between neurons and therefore represent undirected (bidirectional)

links between neurons. It is also composed of chemical synapses which use neurotransmitters

to transmit signals at the synaptic cleft from a neuron to a target neuron and are therefore

represented by directed links in the circuits. Here we consider the circuits of interneurons

and motor neurons involved in two locomotion functions: forward and backward locomo-

tion. The interneurons connect to motor neurons of classes A and B that control body wall

muscles [3–5]. All neurons studied here are cholinergic and excitatory (ACh) except for RIM

which uses neurotransmitter Glutamate and Tyramine and AIB which is glutamatergic (see

Supplementary Note 6). The different types of synaptic interactions respect the symmetries

found in the circuits.

Supplementary Note 2 - Network symmetry group

A network is a set of nodes V = {1, . . . , N} endowed with a connectivity structure defined

by a set of edges E between pair of nodes. An edge i→ j is interpreted as an arrow directed

from node i to node j, which are said to be connected (or adjacent) to one another. The

connectivity structure defined by the edge-set E can be put into the N×N adjacency matrix

A, which has nonzero entries Aij 6= 0 only if there is an edge i→ j ∈ E connecting nodes i

to j, and Aij = 0 otherwise. We consider a weighted adjacency matrix to take into account

the number of synaptic connections as given by [1].
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The concept of permutation is as follows. A permutation of a network, denoted as P , is

a bijective map P : V → V which pairs each node i ∈ V with exactly one node P (i) ∈ V ,

and there are no unpaired nodes (whence the term bijective map). As a consequence,

any permutation P has always a well-defined inverse, denoted as P−1. Moreover, since

permutations are orthogonal transformation, we have that P−1 = P T , where P T denotes

the matrix transpose. Two permutations P1 and P2 can be composed (or multiplied), the

result being another permutation. Composition of two permutations is written as P1 ◦ P2,

and the operation denoted by ◦ is called composition law. In the following, we omit for

simplicity the symbol ◦ and write the composition as P1 ◦ P2 ≡ P1P2.

A set of permutations G = {P1, . . . , Pn} is said to form a permutation group under

composition of its elements if it obeys the group axioms [6] listed below. Definition of

Permutation Group:

1. existence of the identity I ∈ G, defined as I(i) = i for all i.

2. associativity of the composition law : Pi(PjPk) = (PiPj)Pk;

3. closure of the composition law: PiPj ∈ G;

4. existence of the inverse P−1i for all Pi ∈ G, defined by P−1i Pi = PiP
−1
i = I.

In a network of size N there are N ! different ways to permute its nodes. The set of these

N ! permutations obeys the group axioms listed above, so it forms a group. However, this

is not the symmetry group of the network, because not all permutations are, in general,

symmetries. To qualify as a network symmetry, P must preserve the connectivity structure,

i.e., the network adjacency matrix A [6–9]. In other words, the permuted adjacency matrix

PAP−1 must be identical to the original one: A = PAP−1 if P is a permutation symmetry.

Invariance of A under P is formally equivalent to the requirement that P commutes with

A, so we have the formal definition of symmetry:

[P,A] ≡ PA− AP = 0 ⇐⇒ P is a permutation symmetry . (1)

Permutations which obey Eq. (1) are formally called network automorphisms [6]. In short,

network symmetry and automorphism are synonyms of one another. For example, consider

the circuit shown in Supplementary Fig. 1a, and the permutation P acting on it represented
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by the matrix

P =

AVBL

AVBR

RIBL

RIBR


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , (2)

which swaps AVBL with RIBL, and AVBR with RIBR. This permutation is an automor-

phism, because the circuits before and after the action of P are exactly the same, as seen

in Supplementary Fig. 1a. Moreover, it is easy to check that [P,A] = 0. Next, consider the

action of the permutation Q shown in Supplementary Fig. 1b, given by the matrix

Q =

AVBL

AVBR

RIBL

RIBR


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 , (3)

which exchanges AVBL with RIBR and leaves the other neurons fixed. Permutation Q

is not an automorphism, because it does not preserve the connectivity between neurons.

Indeed, before the action of Q, AVBL and AVBR are connected by a link with a weight=3,

while after they are connected by a link with a weight=1. Thus, Q is not a symmetry,

because it alters the connectivity structure of the circuit by changing the weights on the

links. Consistently, we also have that [Q,A] 6= 0.

The set of all network automorphisms obeys all group axioms, so it forms a group.

This group, denoted as Gsym(A), is called the permutation symmetry group of the

network [6], and formally defined as:

Gsym(A) = {P : [P,A] = 0} . (4)

An algorithm to find perfect automorphisms of a given network is call Nauty, and it is given

in Ref. [10], which is based on the well-known problem of testing isomorphism of graphs.

Supplementary Note 3 - Pseudosymmetries

A 25% variation across animals has been found in the connectivity of connectomes [1, 11].

For this reason, exact symmetries (= automorphisms) of the connectome are a simplification

and an idealization. However, they should not be regarded as a falsification of symmetry
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Supplementary Figure 1. Symmetric and non-symmetric permutation. (a) Permutation

P Eq. (2) is a symmetry of the network preserving the connectivity of neurons (automorphism),

and commutes with A: [P,A] = 0. (b) Permutation Q defined in Eq. (3) is not a symmetry of

the network, because it changes the network connectivity by altering the weights of the links, so it

does not commute with A: [Q,A] = 0.

principles, but rather as an intrinsic property of biological diversity. Symmetry principles, in

biology, are invariably idealized and approximate: living systems do have to be sufficiently

non-symmetric to evolve and diversify. Were it not so, the nature of exact symmetries would

forbid any change in organisms’ structure and functions. Furthermore, the animal displays

a range of behaviors that are plastic and can change through learning and memory [12].

Unlike automorphisms, which are canonically defined by Eq. (1), the definition of pseu-

dosymmetry depends on an additional parameter, a small number ε > 0, which, for our

purposes, represents the 25% variation existing across animals.

A permutation Pε is called a pseudosymmetry if the commutator [Pε, A] is non-zero but

small

||[Pε, A]|| = ε (5)

that is, Pε approximates an exact symmetry in the limit ε→ 0.

The norm of the commutator in Eq. (5), defined as

∆(Pε) = ||[Pε, A]|| ≡
∑
i≥j

|Aij − AP (i)P (j)| , (6)
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Supplementary Figure 2. Dihedral symmetry group D8 of the forward gap-junction

circuit (interneurons only). The automorphisms r and t are the generators of this group, as

shown. The structure of this group is then converted into the system of imprimitivity when this

interneuron circuit is incorporated into the whole connectome. This is a general property of all

functional circuits in the connectome, to be elaborated in a follow up paper.

counts the number of links where Pε and A do not commute. The ideal limit of classical

symmetry corresponds to ∆(Pε)→ 0, and we recover exact automorphisms. In general, the

quantity ∆(Pε) → 0 in Eq. (6) quantifies the deviation of Pε from an ideal automorphism.

Thus, we are lead naturally to the following definition of pseudosymmetry.

Definition of network pseudosymmetry– A permutation Pε is called pseudosymme-

try of the network if its deviation ∆(Pε) from ideal automorphism is smaller than a given

indetermination constant ε, i.e., ∆(Pε) < εM , where M is the total number of links includ-

ing the weights. In other words, we require pseudosymmetries to preserve at least a fraction

(1− ε) of the total number of links.
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Algorithm to find pseudosymmetries

In the present work, we choose the indetermination constant to be smaller than ε < 0.25,

which represents the 25% variation in the connectivity of connectomes across animals [1, 3,

11, 13], as a condition for the permutation to be considered a pseudosymmetry. We then

obtain the set of pseudosymmetries shown in the real circuits in the main text. Finding

pseudosymmetries is relatively simple when the size of the network is small, because they

can be determined by an exhaustive search as those permutations satisfying ∆(Pε) < Mε.

To find the pseudosymmetries we compute for each permutation P the norm ∆(Pε) given by

Eq. (6), and we select only those such that ∆(Pε) < Mε. All pseudosymmetries found in the

locomotion circuits represents transformation with indetermination constant ε below 25%.

The list of the indetermination constants of all subgroups appears in Table I. We notice that

pseudosymmetries of locomotion circuits are, in general, highly degenerate, and their number

increases as a function of ε. Due to the fact that ε is relatively small, these real circuits

can then be easily symmetrized to obtain the circuits with ideal symmetries with ε = 0.

This is so, since the pseudosymmetries are relatively close to a perfectly symmetric circuit.

The provided ideal circuits are examples of idealized symmetrical circuit and represents the

closest ideal structure to the real one and at the same time respect the same symmetries

as the pseudosymmetries of the real circuit. The real circuits (and only them) and their

pseudo-symmetries remain the actual circuits to be studied. When the size N of the network

is larger than N > 20, finding pseudosymmetries by using an exhaustive search becomes

computationally impossible. In this case, pseudosymmetries should be determined as the

solutions of a constrained quadratic assignment problem, to be elaborated and described in

detail in a follow up paper.

Supplementary Note 4 - Factorization of the symmetry group

Factorization of the symmetry group into simple and normal subgroups is the fundamental

tool for understanding the main results of this work. Descending to subgroups gives us

useful information about the fine structure of the connectome, and eventually will allow us

to identify its basic building blocks. Next, we explain the notion of subgroups and then

the procedure to find the building blocks of the connectome through the factorization of its

symmetry group. All definitions are standard in the group theory literature and appear in
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Ref. [6].

Definition of Subgroup– A subset H of permutations selected from a group G is said

to be a subgroup of G if the subset H forms itself a group (under the same composition law

that was used in G). The concept of subgroup is fundamental in mathematics and physics

since it gives the structure of fundamental forces and particles [14].

Definition of Simple Subgroup– A simple subgroup is a nontrivial group whose only

subgroups are the trivial group and the group itself. A group that is not simple can be

broken into two smaller groups, a normal subgroup and the quotient group, and the process

can be repeated, as explained next.

Definition of Normal Subgroup– Among all subgroups of a symmetry group, the

normal subgroups, Fig. 1e, are particularly significant in this work, since they allow us to

define the building blocks of the connectome. A subgroup H is said to be normal in a group

G if and only if H commutes with every element g ∈ G, i.e., [g,H] = gH−Hg = 0 (notice

that the requirement is that H commutes with every g as a whole subgroup, not element by

element).

More precisely, consider a group G and a subgroup H ≤ G. For a given element g ∈ G

we can form the set {gh : h ∈ H}, which is called the left coset of H in G. Thus we can

use H to generate the collection of non-overlapping cosets H, g1H, g2H, .... Note that while

H is a subgroup, the cosets are, in general, simply sets. The crux of the matter is that if

the cosets form themselves a group, then H is called a normal subgroup. Viceversa, if H

is a normal subgroup, then the cosets do form a group, called the coset group. Next we

explain which properties H must have in order to be a normal subgroup, or equivalently, for

the cosets to form a group. Let H be a subgroup dividing G in Nc non-overlapping cosets.

Since G may be, in general, a non-abelian group, the left cosets may differ from right cosets.

To be definite, in the following we consider only left cosets. Each left coset is of the form

gH for some g ∈ G. Let us consider two cosets g1H and g2H. Since H is a subgroup, it

must contain the identity element e, i.e. e ∈ H. Therefore g1e = g1 is in the coset g1H.

Analogously, g2e = g2 is in the coset g2H. Now, if cosets behave like a group, then the

product g1g2 must be in the product of two cosets, that is g1g2 ∈ (g1H)(g2H). Since g1g2 is

also in the coset g1g2H, then the product of any element in the first coset with any element

in the second coset should be in the coset g1g2H, i.e., (g1H)(g2H) = g1g2H. To see when

this happens, consider an arbitrary element in the first coset g1H and call it g1h1, and an
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element in the second coset g2h2. Multiplying these two elements we get g1h1g2h2. If this

is in the coset g1g2H, then this product must be equal to g1g2h3 for some h3. Starting from

this equation we can write:

g1h1g2h2 = g1g2h3

h1g2h2 = g2h3

g−12 h1g2h2 = h3

g−12 h1g2 = h3h
−1
2 .

(7)

Since H is a subgroup, the right hand side of Eq. (7) is in H, i.e. h3h
−1
2 ∈ H. As a

consequence, also g−12 h1g2 is an element of H, so we have in general that g−12 Hg2 ∈ H. In a

similar way, one can prove that H ∈ g−12 Hg2, and thus conclude that

g−12 Hg2 = H → [g2,H] = 0 . (8)

To recap, we just proved that if H ≤ G is a subgroup and the cosets form a group, then

it must hold true that [g,H] = 0 for any g ∈ G. In a similar way it can be proven that the

converse is also true, that is, if [g,H] = 0 then the cosets form a group. If this happens,

then H is called a normal subgroup, denoted as H E G, and the coset group is called

quotient subgroup, denoted as G/H. Every group G has at least two normal subgroups,

which are the identity {e} and the group itself G. If these are the only normal subgroups

then G is called a simple group. In other words, a simple group does not have any quotient

subgroups, and for this reason simple groups represent the building blocks of other groups.

Normal subgroups (and only normal subgroups) can be used to decompose the symmetry

group as a direct product, as we discuss next.

Definition of Direct Product Factorization– To explain the factorization of a group

as a direct product of normal subgroups, it is useful to introduce the following notation. Let

us consider a permutation group G and suppose that K is a subset of G. Then, we define

the support of K by:

supp(K) = {i ∈ V | P (i) 6= i for at least one P ∈ K} . (9)

Then, suppose that two subsets K and H of a group G have non-overlapping supports, that

is Supp(K)∩Supp(H) = ∅, then all elements in K commute with those in H, i.e., [K,H] = 0.

Assume now that a group G can be partitioned into a collection of subsets {H1,H2,×,Hn}

such that for any pair Hi and Hj, i 6= j, Supp(Hi)∩ Supp(Hj) = ∅. Also, assume that each

8



subset Hi cannot be further partitioned into smaller subsets with non-intersecting supports.

The important point is that the subsets Hi found in this way are, by simple construction,

the uniquely defined normal subgroups that factorize G into a direct product as:

G = H1 ×H2 × . . .Hn . (10)

More concretely, take the sector of blue motor neurons in Fig. 4a (VB3, VB4, VB5, VB10,

VB11, DB2, DB4, DB6, DB7, DB8) and its associated subgroup S10 and the subgroup Tch
F

which acts on the sector of touch neurons colored green PVCL and PVCR. If we apply any

permutation of S10 to the blue motor neurons, then the neurons PVCL and PVCR in the

other sector are not affected. For instance, a permutation of VB3 and VB4 is a symmetry

that does not affect for instance the touch sector of interneuron PVCL and PVCR. This

factorization is because VB3 and VB4 are both connected to PVCL and PVCR, and this

is a strong constraint on the connections. Imagine now that we loss two of the links and

VB3 connects only to PVCL and VB4 only to PVCR. The resulting circuit would still be

symmetric since we can still permute VB3 with VB4. But to keep the symmetry of the

whole network, this permutation now triggers the permutation of PVCL and PVCR. Thus,

VB3 and VB4 would belong to the touch sector together PVCL and PVCR. We see how

the subgroup structure imposes hard constraints in the network connectivity. The fact that

the connectivity of the network is precisely structured to create subgroups which can be

factorized is an interesting result since not all groups possess this property. Furthermore

the factors are aligned with different broad classification of functions. This is an indication

that these subgroups have biological significance. Thus, the subgroup structure suggests the

segregation of neurons in the network according to function yet allowing integration since

the neurons are connected in the same circuit.

In Supplementary Note 5 we will show that both forward and backward circuits, either

of gap-junctions or chemical synapses, have symmetry groups which factorize as a direct

product of normal subgroups that correspond to specific broad functional categories from

the Wormatlas.

9



Supplementary Note 5 - Symmetry group of C. elegans locomotion circuit

Forward gap-junction circuit

The real circuit with the weights of the synapses is shown in Supplementary Fig. 3. The

corresponding symmetry group is factorized as a direct product of 6 normal subgroups:

Fgap = [C2 ×C2]× [S5 ×D1 ×C2 ×C2] . (11)

The pair of subgroups [C2×C2] acts on the set of four interneurons (AVBL, AVBR, RIBL,

RIBR), but does not move any motor neuron. For this reason, we put them together to

form the composite subgroup CFgap , which we call command subgroup of the forward

gap-junction circuit and define as:

CFgap = C2 ×C2 . (12)

Similarly, the product [S5 ×D1 ×C2 ×C2] in Eq. (11) acts only on the motor neurons

VB and DB, but not on the interneurons. Therefore, we put them together to form the

composite MFgap , and we call it the motor subgroup of the forward gap-junction

circuit, defined as

MFgap = [S5 ×D1 ×C2 ×C2] . (13)

The formal decomposition of the circuit into the functional categories is:

Fgap = CFgap ×MFgap . (14)

Backward gap-junction circuit

The real circuit is shown in Supplementary Fig. 4 with the weighted links. The symmetry

group of the backward circuit of gap-junctions breaks into a direct product of command and

motor normal subgroups as:

Bgap = (C2 ×C2 ×C2 ×C2)× (S12 ×D6 ×C2) . (15)

where the command subgroup is

CBgap = C2 ×C2 ×D1 , (16)
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Supplementary Figure 3. Real forward locomotion gap-junction circuit. This circuit

comprises 22 neurons divided in 2 sectors: the command-sector including the 4 interneurons (AVBL,

AVBR, RIBL, RIBR); and the motor-sector including the remaining motor neurons.

acts on the command sector (AVAL, AVAR, AVEL, AVER, RIML, RIMR, AIBL, AIBR),

and fix the motor sector, while the motor subgroup

MBgap = S12 ×D6 ×C2, (17)

acts only on motor neurons DA and VA and leaves the interneurons fixed. The formal

decomposition of the circuit is:

Bgap = CBgap ×MBgap . (18)
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Supplementary Figure 4. Real backward gap-junction circuit. This circuit comprises 29

neurons connected by gap-junctions. These neurons form 2 disjoint sectors: the command-sector

including 8 interneurons (AVAL, AVAR, RIML, RIMR, AIBL, AIBR, AVEL, AVER); and the

motor sector formed by the remaining 21 motor neurons.

Forward chemical synapse circuit

We construct the forward circuit of chemical synapses using the same neurons of the for-

ward gap-junction circuit discussed in Supplementary Note 5. In addition, we consider also

the two neurons PVCL and PVCR, since they are connected to the other ones via chemical

synapses (but not via gap-junctions). The resulting real circuit with the weighted links

is displayed in Supplementary Fig. 5, and its pseudosymmetries are listed in Table I. We

consider the different chemical synaptic connections according to the different neurotrans-

mitters into excitatory and inhibitory. All neurons are cholinergic and excitatory (ACh)

except for RIM which uses neurotransmitter Glutamate and Tyramine and AIB which is

glutamatergic, as shown in Supplementary Table II. These different types of synaptic con-
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nections do not affect the symmetries of the circuits and therefore we avoid to plot the type

of neurotransmitter in the links of the chemical synapses circuits for clarity in all chemical

circuits.

The corresponding (pseudo)symmetry group factorizes as the direct product of five normal

subgroups in the following way:

Fch = (C2)× (D1)× (S10 ×D1) , (19)

The first subgroup C2 in Eq. (19) acts only on the pair of neurons (PVCL, PVCR) and

leaves the rest fixed. For this reason, we name it touch subgroup of forward chemical

synapse circuit, nd define as:

TFch
= C2 , touch subgroup. (20)

The subgroup D1 acts only on the four interneurons, thus forming a composite subgroup

named command subgroup of the forward chemical synapse circuit, which is defined

as:

CFch
= D1 , command subgroup. (21)

Lastly, the pair of subgroups S10 × D1 acts only on the motor neurons of this circuit,

thus forming the motor subgroup of the forward chemical synapse circuit, which is

defined by:

MFch
= [S10 ×D1] , motor subgroup. (22)

The decomposition of this circuit is:

Fch = TFch
× CFch

×MFch
. (23)

For simplicity we plot only the interneurons that connect to the motor neurons. Full

circuit in Supplementary Fig. 6. All neurotransmitters are cholinergic and excitatory (ACh)

except for RIM which uses neurotransmitter Glutamate and Tyramine and AIB which is

glutamatergic (see Supplementary Note 6). These different types of synaptic interactions

respect the symmetries of the circuits, see Supplementary Note 5.

Backward chemical synapse circuit

Since this circuit has a quite dense connectivity structure, for easier visualization, we

plot it by separating two parts. Supplementary Fig. 6a shows the real circuit involved in the
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Supplementary Figure 5. Real forward chemical synapse circuit. This circuit comprises

20 neurons divided in 3 sectors: the touch-sector including the pair (PVCL, PVCR); the command-

sector including the 4 interneurons (AVBL, AVBR, RIBL, RIBR); and the motor-sector including

the remaining neurons. All neurons in this circuit are cholinergic.

touch-command subgroups. We then add the motor neurons in the class A and replot the

interneurons involved in backward locomotion but only those that connect with the motor

neurons in Supplementary Fig. 6b. These are the neurons AVA, AVE and AVD. Interneurons

AIB and RIM in the command subgroup are not included for clarity of visualization because

they do not contribute to the connections between the different sectors. We then obtain

the real circuit displayed in Supplementary Fig. 6b involved in the touch-command-motor

subgroups.

The symmetry group of the backward chemical synapse circuit shown in Fig. 4c is

factorized as:

Bch = [C2]× [C2 ×C2]× [S5 × S4 × S3 ×C2 ×D1] . (24)

The touch sensitivity subgroup is composed of neurons AVD, the command interneuron
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Supplementary Figure 6. Real backward chemical synapse circuit. a. We plot separately

the interneurons for clarity. This part of the circuit comprises 10 neurons and the chemical synapse

between them. These neurons form 2 disjoint sectors: the touch-sector including the pair (AVDL,

AVDR); and the command-sector including the other 8 interneurons (AVAL, AVAR, RIML, RIMR,

AIBL, AIBR, AVEL, AVER). All neurons in this circuit are cholinergic and excitatory (ACh),

except for RIM and AIB which are inhibitory: RIM uses neurotransmitter Glutamate and Tyramine

and AIB is glutamatergic. The inhibitory nature of their synaptic connections is shown graphically

by T-headed arrows (a, inhibitory links), as opposed to excitatory synapses represented by ordinary

arrows (→, excitatory links). The different types of synapses do not affect the pseudosymmetries

of this circuit. b. We add the motor neurons to the circuit and plot only the interneurons that

connect to the motor sector, for clarity. All neurons in this circuit are cholinergic.

subgroup of neurons AVA, AVE, AIB and RIM, and the motor subgroup consists of motor

neurons VA and DA. The decomposition of this circuit is, respectively:

Bch = TBch
× CBch

×MBch
. (25)
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Supplementary Note 6 - Wormatlas functional categories on neurons

Broad functional categories of neurons are provided at the Wormatlas: http://www.

wormatlas.org/hermaphrodite/nervous/Neuroframeset.html, Chapter 2.2 [2]. A clas-

sification for every neuron into four broad neuron categories is provided as follows: (1)

’motor neurons, which make synaptic contacts onto muscle cells’, (2) ’sensory neurons’,

(3) ’interneurons, which receive incoming synapses from and send outgoing synapses onto

other neurons’, and (4) polymodal neurons, which perform more than one of these functional

modalities’.

The Wormatlas classifies most neurons (some of them unknown) in further functional

categories as well as provides the neurotransmitters. We reproduce the information from

the Wormatlas used in the main text in Supplementary Table I and Supplementary Table II.

Forward circuit

Neuron Functional Category Explanation Neurotransmitter

AVB interneuron driver cell for forward locomotion ACh

RIB interneuron/motor second layer interneuron, ACh

polymodal process of integration of information, locomotion

PVC interneuron command interneuron for forward locomotion, ACh

modulates response to harsh touch to tail

VB motor (sensory) locomotion (ventral), proprioception ACh

DB motor forward locomotion (dorsal), proprioception ACh

Supplementary Table I. Functional categories of the neurons in the forward circuit according to

the Wormatlas.

Supplementary Note 7 - Blocks of imprimitivity

The correspondence of network building blocks and simple subgroups provides a rigorous

theoretical characterization of the network connectivity structure and a natural interpreta-

tion of its broad functional categories according to the Wormatlas. However, a more accurate

description of functionality should take into account also the splitting of these building blocks

into finer topological structures. The fine structure corrections to the building blocks can be

16



Backward circuit

Neuron Function category Explanation Neurotransmitter

AVA interneuron command interneuron, locomotion, ACh

driver cell for backward locomotion

AVE interneuron command interneuron, ACh

drive backward movement

RIM interneuron second layer interneuron, Glu, Tyr

(motor) process of integration of information, locomotion

first layer amphid interneuron,

AIB interneuron locomotion, food and odor-evoked behavior, Glu

lifespan, starvation response

AVD interneuron command interneuron, ACh

modulator for backward locomotion induced by head-touch

VA motor locomotion ACh

DA motor backward locomotion ACh

Supplementary Table II. Functional categories of the neurons in the backward circuit according

to the Wormatlas.

obtained systematically through the concept of system of imprimitivity of a symmetry

group G. All definitions appear in [6].

To define a system of imprimitivity we need first the notions of transitivity and blocks.

A group G is said to be transitive on the set of nodes V if for every pair of nodes i, j ∈ V

there exist P ∈ G such that P (i) = j (in other words, G has only one orbit). A group

which is not transitive is called intransitive. A block is defined as a non-empty subset B of

nodes such that for all permutations P ∈ G we have that:

• either P fixes B: P (B) = B;

• or P moves B completely: P (B) ∩ B = ∅.

If B = {i} or B = {V }, then B is called a trivial block. Any other block is nontrivial. If G

has a nontrivial block then it is called imprimitive, otherwise is called primitive.
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The importance of blocks rests on the following fact. If B is a block for G, then P (B)

is also a block for every P ∈ G, and is called a conjugate block of B. Suppose that G

is transitive on the set of nodes V and define Σ = {P (B) | P ∈ G} as set of all blocks

conjugate to B. Then the sets in Σ form a partition of the set of nodes V , and each element

of Σ is a block for G. We call Σ a system of imprimitivity for the (symmetry) group G

[6].

In the text we have shown that the action of G on the system of imprimitivity Σ gives

important information about the functionality of the neural circuits, provided B is not a

trivial block.

Supplementary Note 8 - Circulant Matrices and Fast Fourier Transform

In this section we discuss the relationship between circulant matrices and discrete Fourier

analysis (see Fig. 1g). In particular, we show that the eigenvalues of circulant matrices can

be computed extremely fast through a routine of just O(N logN) operations, called Fast

Fourier Transform (FFT).

We start the discussion by recalling that a circulant matrix A = circ(a0, a1, . . . , aN−1)

can always be written as a polynomial of the permutation matrix P = circ(0, 1, 0, . . . , 0) of

degree at most N − 1, that is:

A = a0I + a1P + a2P
2 + ...+ aN−1P

N−1 . (26)

For instance, the low-pass filter:

L = circ(1, 1) =

1 1

1 1

 , (27)

can be written as L = I + P . Next, we introduce the matrix F with entries Fab defined as

follows:

Fab =
1√
N

e
2πi
N

ab . (28)

Matrix F is a unitary matrix (F † = F−1) which represents the kernel of the discrete Fourier

transform (DFT). Specifically, given a vector x, its DFT, denoted as x̃, is the vector defined

as: x̃a =
∑

b Fabvb. The crucial point is that the permutation matrix P = circ(0, 1, 0, . . . , 0)

is diagonalized by F , that is P = FΛF−1. This can be easily seen by calculating explicitly
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the product F−1PF , which reads:

(F−1PF )ab =
1

N

N−1∑
k=0

N−1∑
m=0

e−
2πi
N

akPkme
2πi
N

mb =
e

2πi
N

b

N

N−1∑
k=0

e
2πi
N

k(b−a) = δab e
2πi
N

b . (29)

As a consequence of Eq. (29), any circulant matrix A is also diagonalized by F as

(F−1AF )ab =
N−1∑
n=0

an(F−1P nF )ab = δab

N−1∑
n=0

ane
2πi
N

nb , (30)

so we can write down the eigenvalues {λa} of A as

λa =
N−1∑
n=0

ane
2πi
N

na , a = 0, . . . , N − 1 . (31)

Eigenvalues {λa} can be computed efficiently using the FFT of the vector ~α ≡ 1√
N

(a0, aN−1, ..., a1)
T .

To see this, we rewrite λa as

λa =
∑
b

(F−1AF )ab =
∑
bk

(F−1A)akFkb =
√
N

∑
k

(F−1A)akδk0

=
√
N(F−1A)a0 =

1√
N

∑
b

FabAb0 ,
(32)

where we used the fact that F satisfies the following sum rules:

N−1∑
b=0

Fab =
√
Nδa0 ,

N−1∑
b=0

F−1ab Fb0 =
1

N
δa0 .

(33)

Using the vectors ~α ≡ 1√
N

(a0, aN−1, aN−2, ..., a1)
T and ~λ ≡ (λ0, λ1, ..., λN−1)

T , we can write

Eq (32) in the simple form

F~α = ~λ , (34)

which shows that the eigenvalues {λa} of A are the components of the DTF of vector ~α.

Since F~α can be evaluated in O(N logN) operations using a FFT, then the computational

effort for diagonalizing a circulant matrix A requires O(N logN) operations, too. Thus, we

can interpret the functionality of the circulant matrix as a fast way (almost linear in the

number of nodes) to perform a Fourier Transform for processing of information.
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