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Efficient complex systems have a modular structure, but mod-
ularity does not guarantee robustness, because efficiency also
requires an ingenious interplay of the interacting modular com-
ponents. The human brain is the elemental paradigm of an
efficient robust modular system interconnected as a network of
networks (NoN). Understanding the emergence of robustness in
such modular architectures from the interconnections of its parts
is a longstanding challenge that has concerned many scientists.
Current models of dependencies in NoN inspired by the power
grid express interactions among modules with fragile couplings
that amplify even small shocks, thus preventing functionality.
Therefore, we introduce a model of NoN to shape the pattern of
brain activations to form a modular environment that is robust.
The model predicts the map of neural collective influencers (NCIs)
in the brain, through the optimization of the influence of the
minimal set of essential nodes responsible for broadcasting infor-
mation to the whole-brain NoN. Our results suggest intervention
protocols to control brain activity by targeting influential neural
nodes predicted by network theory.

brain | collective influence | robustness | network of networks |
optimal percolation

Experience reveals that the brain is composed of massively
connected neural elements arranged in modules (1, 2) spa-

tially distributed, yet highly integrated to form a system of net-
work of networks (NoN) (3–9). These modules integrate in larger
aggregates to ensure a high level of global communication effi-
ciency within the overall brain network, while preserving an
extraordinary robustness against malfunctioning (3–5).

The question of how these different modules integrate to
preserve robustness and functionality is a central problem in
systems science (3–5). The simplest modular model (2) would
assign the same function to the connections inside the modules
and across the modules. However, the existence of modularity
gives rise to two types of connections of intrinsically different
nature: the intermodular links and intramodular links (6, 9–11).
Intramodular links define modules usually composed of clus-
tered nodes that perform the same specific function, like, for
instance, the visual cortex responsible for processing visual infor-
mation. Besides having intralinks, nodes in a given module may
have intermodular connections to control or modulate the activ-
ity of nodes in other spatially remote modules (3, 5, 6, 9, 12).

For example, in integrative sensory processing, the intermod-
ular links mediate the bottom-up (or stimulus-driven) processes
from lower-order areas (e.g., visual) to higher-order cortical
ones, and top-down (or goal-directed) control from higher lev-
els to lower ones (3, 5, 6, 12). Indeed, in studies of attention,
the pattern of brain activation indicates that high-level regions
in dorsal parietal and frontal cortex are involved in controlling
low-level visuospatial areas forming a system of networks con-
nected through intermodular control links (dorsal-frontoparietal
NoN) (6, 12). The purpose of this work is to introduce a minimal
model for a robust brain NoN made of such intramodule connec-
tions and intermodular controllers, which, by abstracting away

complexity, will allow us to make falsifiable predictions about the
location of the most influential nodes in the brain NoN. Target-
ing these neural collective influencers (NCIs) may help in design-
ing intervention protocols to control brain activity prescribed by
network theory (13, 14).

Results
We consider a substrate NoN composed by two modules (Fig.
1A; below, we generalize to more modules). Every node i has k in

i

intramodular links to nodes in the same module and kout
i inter-

modular links to control other modules (for the sake of simplic-
ity, we first consider the case kout

i ∈ {0, 1} for every node i ; the
general case kout

i ∈ N0 will be treated later). Because controlling
links connect two different modules, they are fundamentally dif-
ferent from intramodular ones: The latter encode only the infor-
mation about if two nodes are connected or not inside a mod-
ule, whereas the former carry the additional information about
how nodes control each other in two different modules. We arrive
to an important difference between both types of links that has
been recognized in previous NoN models (10). An intermodu-
lar link between two nodes exists because of their mutual depen-
dence across two distinct modules performing different functions.
Therefore, it is reasonable that, for this intermodular link to be
active, both nodes across the modules should be active. On the
contrary, nodes inside a module connected only via intramod-
ular links that do not participate in intermodular dependencies
will be active independently on the other module’s activity. The
intralinks and interlinks are analogous to the strong and weak
links defining hierarchical modules in the NoN in refs. 9 and 11.

Significance

Evidence suggests that the brain is arranged in functionally
specialized modules to form a network of networks (NoN).
Understanding how functionality emerges from the integra-
tion of such modular architectures is one of the greatest sci-
entific challenges. We introduce a model of brain NoN, which
is robust against random node failures, captures the integra-
tion of functionally specialized modules in the brain, and pro-
vides falsifiable predictions about the locations of the most
influential nodes, called neural collective influencers, in the
brain network—predictions that are impossible in existing but
fragile models of interdependent NoN. If confirmed by experi-
ment, our results may pave the way for applications of clinical
interest.
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Fig. 1. Definition of NoN model. (A) Substrate NoN. Each node has kin
i

intramodular links and kout
i intermodular control links. Nodes send infor-

mation through two messages to their neighbors: a message ρi→j along
the intralink and a message ϕi→k along the control link. (B) Control rule
Eq. 3. A node i in the substrate NoN may receive an external input ni = 1, or
not ni = 0. If the node has no control link, it activates as soon as it receives
the external input: ni = 1 =σi . If it has 1 control link, it activates σi = 1 if
and only if (iff) it receives the input, ni = 1, and its neighbor at the edge
of the interlink receives the input as well (nj = 1). If it has 2 control links
(or more) it activates (σi = 1) iff it receives the input and at least one node
among its j neighbors at the edge of the interlink also receives an input
nj = 1, otherwise it does not activate (σi = 0). (C) Activation of the mutual
giant component. Global communication in the NoN is measured through
the largest active component, G, which is measured only with the active
nodes σi = 1. We start with a NoN with no external input (all ni = 0), then
G = 0 (stage 1). Once an input is presented to the brain NoN (stage 2),
nodes activate according to the rules in B, and the largest component of
activated nodes defines G (stage 3), which is not necessarily equal to the
sum of the individual giant components of the single networks. Note the
crucial ingredient of the model (not shared by the model of ref. 10): Active
nodes (σ= 1) may exist outside G, and they can have intermodular control
links with other nodes outside the giant component. Thus, nodes can be
active without being part of the giant component of their own network in
contrast to the rules in ref. 10. (D) Collective influence. The collective influ-
ence of node i is determined by the sum of the degree of nodes in G on the
surface of two balls of influence with radius `: ∂Ball(i, `) centered at i, and
∂Ball(j, `) centered at j, where j is a neighbor of i at the edge of an interlink
having out-degree kout

j = 1.

To elaborate on the mode of intermodular control, think of
a node i as a receiver of inputs external to the NoN, such as
external sensory inputs to the primary visual cortex (Fig. 1B and
SI Appendix). The input variable ni =1, 0 specifies whether i
receives the external input (ni =1) or not (ni =0). For exam-
ple, in the visual system, ni =1 is the subset of nodes receiving
inputs in the earlier stages in cortical sensory processing (6).

According to the discussion above, the input ni alone does not
determine the activation/inactivation state of the node i , which
we measure by the state variable σi taking values σi =1 if i is
activated, and σi =0 if not. When i has a control link with j

in another network, the state σi is determined not only by the
input ni , but also by the input nj to j : node i is activated σi =1
only when both nodes receive the input (ni =1 and nj =1).
On the contrary, when at least one of the i , j nodes does not
receive input (ni =0 or nj =0), node i is shut down σi =0. This
top-down and bottom-up control between different modules is
quantified by the following control rule, which acts as a logical
AND between two controlling nodes (we consider kout

i = {0, 1};
Fig. 1B):

σi = ni nj , control rule for kout
i = 1. [1]

Because not all nodes participate in the control of other nodes,
a certain fraction of them [determined by the degree distribution
P(kout)] do not establish intermodular links with other nodes,
kout
i =0. These nodes without control-links (Fig. 1B) activate as

soon as they receive an external input, that is,

σi = ni , control rule for kout
i = 0. [2]

Generalization of the control rule to more than one control
link per node can be done in different ways. Here, we consider
that a node is activated (σi =1) iff it receives the input ni =1 and
at least one among the nodes j in another module connected to
i via a control link receives also an input (i.e., nj =1). Otherwise
i is not activated (Fig. 1B). Mathematically:

σi = ni

[
1−

∏
j∈F(i)

(1− nj )

]
, general control rule [3]

where F(i) is the set of kout
i nodes connected to i via intermodu-

lar control links. In the following, we always refer to the general
control model Eq. 3, unless stated otherwise.

The distinction between ni and σi models the initial sensory
inputs (ni) and the final state response of the brain (σi) to those
stimuli from top-down and bottom-up influences (6). Thus, the
final state of the brain network σi encodes the brain’s interpre-
tation of the world by modulating external input ni via controls
(Eq. 3) from other cortical areas (Fig. 1C). We note that a gen-
eral model should explain brain activation, even when no exter-
nal input is applied to the NoN (e.g., in resting-state brain). This
may be accounted for by a dynamical system that drives the NoN
into stable attractors, which in resting state may need no external
input anymore.

Apart from receiving inputs ni and controlling other nodes via
Eq. 3, active nodes can also broadcast information to the net-
work. When all nodes are active, the information sent by a node
can reach the whole brain NoN. If some nodes become inactive
(i.e., σi =1→σi =0), the remaining active nodes group together
in disjoint components of active nodes, such that information
starting from an active node in one active component cannot
reach another active node in a different active component. We
quantify the global communication efficiency of the brain NoN
with the size of the largest (giant) mutually connected active
component G made of active nodes σi =1 (stage 3 in Fig. 1C)
(9–11). By strict definition, G could be (almost) the entire brain
(e.g., a visual stimulus sets off emotional cues, memory areas,
etc.). In what follows, we will restrict the NoN to specific systems
of interest in the brain, like the visual or motor system, which are
identifiable by fMRI methods for a particular single task.

Each configuration of active/inactive nodes ~σ = (σ1, . . . , σN )
is associated with a specific working mode of the brain. The
plethora of different functions dynamically executed by the brain
(4–7) results in the moment-by-moment changes of the config-
uration (σ1, . . . , σN ), and thus in different values of G . The
crux of the matter is that, for typical input configurations ~n =
(n1, . . . ,nN ) [i.e., the ones produced by the majority of the exter-
nal (e.g., visual) inputs], G has to be large enough for a global
integration of information from distributed areas in the brain.
In other words, the brain NoN has to remain globally activated

3850 | www.pnas.org/cgi/doi/10.1073/pnas.1620808114 Morone et al.
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during the acquisition of different inputs, meaning that G has to
be robust, and the more robust, the more states the brain can
achieve. Therefore, a model of a brain NoN must be able to cap-
ture such robustness.

In our statistical mechanics approach, being robust means that
the brain should develop an extensive G for typically sampled
configurations of the external inputs. As a first approximation, we
assume that these inputs are sampled from a flat (random) distri-
bution of ~n . Thus, we first study the robustness of the NoN across
the configurations of states typically sampled by the brain. The
problem then becomes a classical percolation study of the NoN
(10) following the activation/inactivation rule of Eq. 3. Having
established our model in the normal brain under typical inputs,
we will then move to disease states, which impede global com-
munication by annihilating focal essential areas in G (13, 14).

We calculate G induced by typical random configurations of
inputs ~n as a function of the fraction q =1−〈n〉 of zero inputs
[these zero inputs are analogous to removed nodes in classical
percolation (9–11)], and we show that G remains sizeable, even
for high values of q , thus probing the robustness of the model
NoN. At a critical value qrand, we find the random percolation
critical point G(qrand) = 0 (9–11) separating a globally connected
phase with nonzero G (q < qrand) > 0 from a disconnected phase
G(q > qrand)= 0 composed of fragmented subextensive clusters
with no giant component in the thermodynamic limit. The most
robust NoN is tantamount to a system with no disconnected
phase (i.e., with a large value of qrand, ideally qrand =1). That is,
the brain is robust if it can sustain a well-defined giant connected
component for as many typical inputs as possible.

The dynamics of information flow in the NoN is defined as
follows. Generally speaking, each node processes activity from
neighboring nodes. Here, we abstract this coding process by con-
sidering that nodes receive information from other nodes via
“messages” containing the information about their membership
in G . Based on the information they receive, nodes broadcast
further messages, until they eventually agree on who belongs
to G across the whole network. Because there are two types
of links, we define two types of messages: ρi→j ∈{0, 1} running
along an intramodular link, and ϕi→j ∈ {0, 1} running along an
intermodular control link, where {0, 1} represents a {no, yes} “I
belong to G” message, respectively (Fig. 1A).

In this view, the existence of an extensive giant mutually
connected component across the NoN, G > 0, expresses a per-
colation phase produced by the binding of activation patterns
across different modules in a distributed emergent global sys-
tem. Under this interpretation, perception is not the responsi-
bility of any particular cortical area, but is an emergent critical
property of the percolation of memberships interchanged across
all members of G (15). The percolation critical point qrand can be
interpreted as the transition between a phase of global percep-
tion G > 0 for q < qrand and a null perception phase characterized
by nonextensive disconnected components and the concomitant
G =0 for q > qrand.

The equations governing the information flow in the brain
NoN follow the updating rules of the membership messages
according to (analytical details in SI Appendix):

ρi→j = σi

[
1−

∏
k∈S(i)\j

(1− ρk→i)
∏

l∈F(i)

(1− ϕl→i)
]
,

ϕi→j = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

l∈F(i)\j

(1− ϕl→i)
]
,

[4]

where S(i) \ j is the set of k in
i − 1 neighbors of node i in the

same module, except j . Eq. 4 indicates, for instance, that a posi-
tive membership message ρi→j =1 is transmitted from node i →
node j in the same module (analogously, ϕi→j transmits mes-
sages to the other module) if node i is active σi =1 and if it
receives at least one positive message from either a node k in the

same module ρk→i =1 or a node l in the other module ϕl→i =1.
The logical OR is important; it is the basis for such a robust
R-NoN brain model of activation as elaborated below.

To compute G , it is sufficient to know for each node i whether
it is or not a member of G , which is encoded in the quantity ρi ∈
{0, 1} representing the probability to belong to G = 〈ρi〉:

ρi = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

l∈F(i)

(1− ϕl→i)
]
. [5]

Here, we arrive to an important point (illustrated in Fig. 1C),
which ultimately explains the robustness of our brain NoN: In
our model, a node can be active (σi =1) even if it does not belong
to the giant mutually connected active component G , thus pre-
venting catastrophic cascading effects. This feature of the brain
model is supported by neuroanatomical correlates: The brain
responds reasonably well to injuries, for instance, to areas such
as the arcuate fasciculus (the white matter tract that connects
the two most important language areas—Broca’s and Wernicke’s
areas). This property is the main difference between our model
and previous NoN models (10) describing catastrophic collapse
in power-grids (16), as discussed next.

Universality Classes of NoN. In the model of ref. 10, a node can be
active only if it belongs to the giant component in its own net-
work. Thus, in this model, the active/inactive state of a node is
controlled by the whole global giant component ρi , rather than
the local state variable σi , Eq. 3, as in our model. This means
that, in ref. 10, the state of a node is actually controlled by the
whole network [i.e., intermodular controls (therein called depen-
dencies) carry the weight of the extensive giant component].
Analogously, the NoN cannot be built from the G =0 phase,
because it would require the existence of extensive components
for each network. For this reason, the resulting NoN (10) is frag-
ile; a single inactivation of a node can lead to catastrophic col-
lapse of the whole active giant component [which, we note, can
be avoided by strong correlations between the hubs of different
networks (9)]. Conversely, the model of Eq. 3 allows nodes to be
active, even if they do not belong to G (i.e., when they belong
to nonextensive disconnected components). These small compo-
nents become crucial to build the G > 0 phase from the G =0
phase by adding interlinks to nonextensive components.

Indeed, the model of ref. 10 was proposed to capture the
fragility of certain manmade infrastructures, such as the catas-
trophic collapse of power grids (e.g., the Northeast U.S. blackout
of 2003, which allegedly started in a single power-line failure as
modeled in ref. 10). The equation to compute G in this catas-
trophic C-NoN model reads:

ρi = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
][
1−

∏
k∈F(i)

(1− ϕk→i)
]
. [6]

We note that Eq. 6 differs from R-NoN Eq. 5 in that the logical
OR has been replaced by the logical AND for message passing
in C-NoN.

A third possible model for NoN is the modular model (2) men-
tioned in the introduction, which assumes no difference between
intralinks and interlinks as studied in ref. 17. In this model, there
are no control links; therefore, nodes cannot control each other,
and the state equals the input: σi =ni . This model is described by
using only the intralink messages, ρi→j , corresponding to a sin-
gle network structure, albeit with modularity (2), and ρi is simple,
given by (no special messages between modules):

ρi = ni

[
1−

∏
k∈S(i)

(1− ρk→i)
]
. [7]
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We thus arrive to three different universality classes of NoN—
R-, C-NoN, and modular single network—according to the three
models given by Eqs. 5–7, respectively, which are defined accord-
ing to which variable controls the state of node i (σi , ρi , ni)
(Table 1). Among the three universality classes, only R-NoN is
robust with the functionality of control across modules via top-
down and bottom-up influences.

Robustness of the Brain NoN to Typical Inputs. We compute G(q)
from Eq. 5 when we present different typical random inputs ni

and show that the obtained percolation threshold qrand is close to
1. The results are first tested on synthetic NoN made of Erdös–
Rényi (ER) and scale-free (SF) random graphs (1).

Results in Fig. 2A show that our model indeed defines a robust
R-NoN characterized by large qrand. Additionally, Fig. 2B com-
pares model R-NoN Eq. 5 with the catastrophic C-NoN univer-
sality class Eq. 6, showing that these two models capture two
different phenomena, the former robust with larger qrand and
second-order phase transitions, and the latter catastrophic with
smaller qrand with first-order abrupt transitions.

Response to Rare Events: NCIs. Having investigated the behavior
of the model under typical inputs, we now study the response
of the brain NoN to rare events targeting a set of NCIs. These
are rare inputs: An optimal (minimal) set of nodes that when
they are shut down (ni =0) disintegrates the giant component
to G =0 using the smallest possible fraction of nodes, qinfl. This
is the process of optimal percolation (rather than classical ran-
dom percolation treated above) as defined in ref. 18. The mal-
function of these neural influencers could be associated with
pathological states of the brain arising from interruption of
global communication in the network structure, such as depres-
sion or Alzheimer’s disease. The underlying conjecture is that
these influencers could be responsible for neurological disorders
(13, 14). At the same time, activating this minimal set of neu-
ral influencers, (ni =1, σi =1), would optimally broadcast the
information to the entire network (19). Thus, these neural influ-
encers are also the minimal set of nodes that provide integration
of global activity in the NoN (15).

Finding this minimal set is a NP-hard combinatorial optimiza-
tion problem (19). Here, we follow ref. 18, which developed the
theory of optimal percolation for a system with a single net-
work and solve the problem in a NoN. As opposed to random
percolation that identifies qrand, optimal percolation identifies
the minimal fraction of influencers qinfl that, if removed, opti-
mally fragment the giant connected component [i.e., with mini-
mal removals (ni =0)]. We note that these neural influencers are
statistically rare (i.e., they cannot be obtained by random sam-
pling ~n).

The mapping to optimal percolation (18) allows us to find
brain influencers under the approximation of a sparse graph by
minimizing the largest eigenvalue λ(q , ~n) of a modified nonback-
tracking (NB) matrix (20) Mρϕ≡ (∂ρi→j/∂ϕk→`)ρ=ϕ=0 of the
NoN over all configurations of inputs ~n having a fraction q of
zero inputs (analytical details in SI Appendix). The NB matrix M̂

Table 1. Universality classes of NoN

Control
Universality class State control Robust functionality

Brain robust σi Yes Yes
R-NoN Eq. 5

Power-grid catastrophic ρi No Yes
C-NoN Eq. 6

Modular single ni Yes No
network Eq. 7

Fig. 2. Robustness and NCI in NoN. (A) Robustness of NoN under typical
random inputs. Size of the largest active component G(q) for typically sam-
pled inputs ~n for ER 2-NoN (meaning a NoN made of two ER networks)
for the R- and C-NoN universality classes (kout = 1 for all nodes, one-to-
one control links, total size N = 2 × 106). The large value of qrand in R-NoN
compared with C-NoN confirms the robustness of the former. The transi-
tion separating the phases G = 0 and G> 0 is 2nd-order in R-NoN and 1st-
order in C-NoN, reinforcing the fundamental difference (robust vs. frag-
ile) of these two universality classes (errors are SEM over 10 realizations).
(B) Phase diagram for R- and C-NoN. Behavior of qrand as a function of the
average 〈kin〉 for the ER 2-NoN in A, where each node has kout = 1. Here,
qrand is the fraction of nodes with zero inputs in one network (nodes in the
other network have all nonzero inputs). The difference in qrand between
R- and C-NoN ranges from 20% for 〈kin〉= 10 to 80% for 〈kin〉∼ 2.5. Ana-
lytically, we find for R-NoN with kout = 1, qrand = 1− 1/(2〈kin〉). (C) Rare
inputs and NCI in ER 3-NoN. Size of G(q) as a function of the untargeted
(ni = 0) nodes q for a NoN of three ER networks (total size N = 3 × 106).
Each network has 106 nodes, 〈kin〉= 4.0 and 〈kout〉= 0.5. We show the CI
optimization (red circles, `= 4) and the high-degree adaptive (HDA) heuris-
tic (blue squares; removal by highest kin) (21). The arrow marks the posi-
tion of the minimal fraction of influencers qinfl, which is smaller than the
HDA centrality (errors are SEM over 10 realizations). Other heuristic cen-
tralities perform worse than HDA. (D) Rare inputs and NCI in SF 3-NoN.
G(q) for a NoN with three SF networks (total size N = 3 × 106). Each net-
work is SF with 106 nodes, minimum and maximum degree kin

min = 2 and
kin

max = 103, and power-law exponent γ= 3. The node out-degree is Poisson-
distributed with average 〈kout〉= 0.5 (errors are SEM over 10 realizations).
The difference between CI (`= 3) and HDA is shown; HDA fails to identify
40% of influencers.

controls the stability of the solution of the broken phase G =0.
This solution becomes unstable (i.e., G becomes nonzero) when
the largest eigenvalue is 1. The minimal set of influencers ~ninfl
and their fraction qinfl are then found by solving: λ(qinfl, ~ninfl) =
min~n λ(qinfl, ~n)= 1.

The eigenvalue λ(~n) can be efficiently minimized by progres-
sively removing the input (ni = 1→ ni = 0) from the nodes with
the highest Collective Influence index CI`(i) (detailed derivation
in SI Appendix) given by (zi ≡ k in

i + kout
i − 1):

CI`(i) = zi
∑

j∈∂Ball(i,`)

zj +
∑

j∈F(i):

kout
j =1

zj
∑

m∈∂Ball(j ,`)

zm . [8]

The collective influence CI`(i) of node i is determined by two
factors (Fig. 1D). The first one is a node-centric contribution,
given by the first term in Eq. 8, where Ball(i , `) is the set of nodes
inside a ball of radius ` > 0 (` is the distance of the shortest
path between two nodes), centered on node i , and ∂Ball(i , `)
its frontier. This ball is grown from the central node i by
following both intralinks and interlinks, and thus may invade dif-
ferent networks in the NoN. The second factor is a node-eccentric
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contribution, given by the second term in Eq. 8, where the sum
runs over all nodes j connected to i by an interlink which have
out-degree equal to one kout

j =1 (this means that nodes j have
no other interlinks except to node i). The contribution of each of
these j nodes is given by growing another ball Ball(j , `) around
them. This last contribution is absent in the single network case
(18), and thus, it is a genuine new feature of the brain NoN.

The NCI are formally defined as the nodes in the minimal set
up to qinfl. To identify them, we start with all ni =1 and σi =1,
and we progressively remove one by one the inputs (setting
ni =1→ni =0) to the nodes having the largest CI`(i) value if
they are active σi =1. At each step, the CI`(i) values are recom-
puted, and the algorithm (described in detail in SI Appendix)
stops when G =0 where the NCI set is identified.

We first test our predictions on influencers using syntheti-
cally generated ER-NoN and SF-NoN. Fig. 2C and D show the
optimality (smaller qinfl) of our predicted set of influencers in
comparison with the high-degree centrality (21), a heuristic com-
monly used in graph analysis of pathological brain networks (14).
The theory allows us to predict the neural collective influence
map (NCI-map) of the brain as explained next.

NCI-Map of the NoN. We apply our model to a paradigmatic case
of stimulus-driven attention (9, 11, 22). The experiment con-
sists of a dual visual–auditory task performed by 16 subjects (SI
Appendix). Each subject received simultaneously a visual stimu-
lus and an auditory pitch, to which the subject has to respond
with the right hand if a number was larger than a reference and
with the left hand if a tone was of high frequency.

The rationale to choose this experiment, where stimuli are
received simultaneously, is that this imposes to select an appro-
priate response order with consequent deployment of high-level
control modules in the brain (22). This effect emphasizes the role
of top-down control of intermodular links that is the main effect
we are trying to capture in our model.

The brain NoN was inferred from the brain activity recorded
through functional magnetic resonance imaging (fMRI). Nodes
in the NoN represent fMRI voxels whose size is given by the nor-
malized spatial resolution of the fMRI scan 2× 2× 2 mm3. Pair-
wise cross-correlation between the BOLD signals of two nodes
represents only indirect correlations (known as the functional
connectivity network) capturing the weighted sum of all possible
direct interactions between two nodes that could arise from the
underlying unknown structural network and other interactions
modulating the activity of neurons (7). To construct the brain
NoN, we infer the strength of these interactions between nodes
by using machine learning maximum-entropy methods (23–25),
where we maximize the likelihood of the interactions between
nodes given the observed pattern of fMRI cross-correlations (full
details in SI Appendix). The resulting NoN is shown in Fig. 3A
and B, which is then used to identify the NCI in the brain net-
work activated for this particular task.

In all subjects, we observe the following (Fig. 3 A and B):
(i) A network partially covering the anterior cingulate (AC)
region, recruited for decision making and therefore process-
ing top-down and bottom-up control; (ii) a network covering
the medial part of the posterior parietal cortex (PPC), which
receives somatosensory inputs and sends the output to areas of
the frontal motor cortex to control particular movements of the
arms; and (iii) a network covering the medial part of the pos-
terior occipital cortex (area V1/V2), along the calcarine fissure,
which is responsible for processing visual information at lower
input levels (an additional auditory network was also observed;
SI Appendix).

We apply our theory to the AC-PPC-V1/V2 3-NoN to first test
the robustness under typical inputs and then obtain the NCI (rare
inputs). Indeed, the obtained brain 3-NoN is very robust to typ-
ical inputs, as shown by the large (close to one) qrand≈ 0.9 in
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Fig. 3. Brain-NoN. (A) The 3-NoN in dual-task fMRI experiment. Shown
is the spatial location of the three main networks for a typical subject (as
opposed to averaging over all subjects as in D) showing the anterior cingu-
late (AC; red), posterior parietal cortex (PPC; green), and posterior occipital
visual areas V1/V2 (blue). This 3-NoN structure appears consistently for all
16 subjects. Nodes in the NoN represent voxels in the fMRI BOLD signal of
normalized size 2 × 2 × 2 mm3. (B) Topology of the 3-NoN. Same as A, but
in the network representation with interlinks in gray. Number of nodes in
NoN is N = 1,134, 〈kin〉= 3.2, and 〈kout〉= 2.5. (C) Robustness and NCI. Size
of the largest active cluster G(q) as a function of the untargeted (ni = 0)
nodes q after CI optimization (red curve; `= 3) and after typical random
states (black; random percolation). (D) NCI-map of the human brain aver-
aged over 16 subjects. The color code ranges from 0 to 5.2 and represents
the number of subjects in which a node appears in the ranked NCI set (SI
Appendix). High-CI influential regions are located mainly in the AC module
for processing top-down control, whereas the influential nodes are rarely
located in the lower-level V1/V2 region. The PPC region contains a portion
of influential nodes closer to AC. (E) Complexity reduction to top NCI nodes.
Controlling links between different networks are mainly mediated by top
influencers.

Fig. 3C (black curve). Conversely, the theory is able to localize
the minimal set of NCI with qinfl≈ 0.2 (Fig. 3C, red curve). Using
these influential nodes, we construct the NCI-map averaging over
all subjects. The emerging NCI-map averaged over the 16 sub-
jects is portrayed in Fig. 3D (details in SI Appendix). We find that
the main influence region (high CI) is located mainly in the AC
module as expected, because AC is a central station of top-down
control. The areas of high influence also extends to a portion of
the PPC involved in both top-down and bottom-up control, and
it is less prominent in the V1/V2 areas, which are mostly involved
in processing input information and bottom-up interactions.
Therefore, the NCI-map of the brain suggests that control is
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deployed from the higher level module (AC) toward certain
strategic locations in the lower ones (PPC–V1/V2), and these
locations can be predicted by network theory. The complexity
reduction obtained by coarse-graining the whole NoN to the top
NCI in Fig. 3E highlights the predicted strategic areas in the brain.

Discussion
We present a minimal model of a robust NoN to describe the
integration of brain modules via control interconnections. The
key point of the model is that a node can be active, even if it
does not belong to the giant mutually connected active com-
ponent so that cascades are not fatal. Although our model is
expressed in abstracto by logic relations, it is able to make falsifi-
able predictions (e.g., the location of the most influential neural
nodes involved in information processing in the brain). If con-
firmed experimentally, our results may have applications of clini-
cal interest, in that they may help to design therapeutic protocols

to handle pathological network conditions and to retune diseased
network dynamics in specific neurological disorders with inter-
ventions targeted to the activity of the influential nodes predicted
by network theory. On the theoretical side, further extensions of
our model are also possible. For instance, the model could be
enriched by incorporating temporal dependence of brain activa-
tion, which is relevant for the theoretical description of synaptic
plasticity (26).
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Message passing in the brain-NoN

The classification of connections into intra-module, intra-links,
and inter-module, inter-links, together with an introduction
of the mathematical model describing robust brain Network
of Networks (NoN) was provided in the main article. In the
present section we further expand the explanation of the NoN
model and the derivation of the message passing equations
describing the information flow in the brain. In the following
sections, we then tackle the problem of finding the most in-
fluential nodes in the brain-NoN with general configuration
of intra- and inter-links. We conclude with an explanation of
the numerical tests and the construction of the CI-map of the
brain.

In what follows, we consider two modules A and B, inter-
connected by undirected inter-links, where each module is an
independent network made up of NA respectively NB nodes
connected via intra-links (N = NA + NB). The theoretical
approach and indeed the obtained collective influence formula
readily carry over to arbitrary numbers of modules.

Throughout most of the supplementary sections, we adopt
the convention to explicitly show the node’s belonging to
either module, i.e. every index iA representing a node will be
accompanied by the network label to which the node belongs.
Moreover, we denote a node’s degree of undirected intra-links
by kin

iA
and undirected inter-links degree by kout

iA
. Furthermore,

the input variable niA = 1, 0 specifies whether node iA receives
an external input (niA = 1) or not (niA = 0). It is understood
that the same terminology applies equivalently to nodes iB in
module B.

Following the definition of our brain model, we assume that
a node iA which is connected to one or several nodes from
the other module is activated (σiA = 1) if it receives an input
(niA = 1) and at least one among the nodes jB connected
to it via an inter-link also receives an input (njB = 1), as
depicted in Fig. 1b. In other words, a node with one or several
inter-link dependencies is inactivated when it does not receive
the input (niA = 0), or when the last of its neighbors in
the other module ceases to receive an external input. This
interaction is mathematically formalized by the concept of the
state variable σiA :

σiA = niA

[
1−

∏
jB∈F(iA)

(1− njB )

]
, [9]

where F(iA) denotes the set of nodes in module B connected
to iA via an inter link. For the case that node iA has exactly
one inter-link to one node jB in module B, the above equation
reduces to

σiA = niAnjB , for one-to-one connections. [10]

By convention, we also agree to include in the above equation
for σiA the case where node iA does not have any inter-links
kout
iA

= 0. In this case, we simply equate

σiA = niA , for kout
iA

= 0. [11]

Fig. S1. a Simple NoN illustrating the activation rule Eq. (9). b Two NB walks of
length ` = 4, centered in node i in the 2-NoN. Note that the red walk visits node j

twice, hence it contains a NB loop. However, as shown in [18], NB walks with loops
can be neglected in the cost energy function to leading order O(N).

Alternatively, we can say that products over empty sets
F(iA) = ∅ default to zero. This is an important feature
of the model, namely that a fraction of nodes determined by
〈kout〉 are not involved in control.

In order to get a better understanding of the state variable
σiA , we consider the following example of the simple NoN
depicted in Fig. S1a. For this particular case, we have

σiA = niA nkB ,

σjA = njA nkB ,

σkB = nkB

[
1− (1− niA )(1− njA )

]
,

[12]

and the remaining nodes l with no inter-links, kout
l = 0, have

σl = nl.
As can be seen, when the nodes in A receive input niA =

njA = 1 but node kB does not, nkB = 0, this configuration of
external inputs affects all state variables σkB = σiA = σjA = 0.
On the other hand, keeping njA = nkB = 1 and removing the
input niA = 0 only affects the state of node iA by switching
it to inactive σiA = 0 since node kB is connected to another
node in module A, namely jA, and hence σkB = 1 is active
together with σjA = 1.

Let us now turn our attention to the messages, representing
information broadcasted between active nodes within the same
module or between active nodes in different modules. The
distinction between intra-module and inter-module messages
naturally arises due to the conceptual difference between intra-
links and inter-links and is reflected in the corresponding
distinction between messages ρiA→jA sent along intra-links
and messages ϕiA→jB transmitted across inter-links (Fig. 1a).

It is clear that when all nodes are initially active, the
information is able to circulate in the entire NoN. On the
other hand, as individual nodes are sequentially turned off,
the remaining active nodes are progressively fragmented into
disconnected clusters and as a result the information can no
longer be broadcasted globally. The efficiency to communicate
globally can thus be represented by the size of the largest
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(giant) connected cluster of active nodes G across all modules
constituting the NoN, as depicted in Figs. 1c, e.

Formally, we denote

ρiA→jA ≡ probability that iA is connected to G
other than via in-neighbor jA ,

ϕiA→jB ≡ probability that iA is connected to G
other than via out-neighbor jB .

[13]

The size of the mutual giant active component G in turn
is entirely determined by the solution of a set of 2M self-
consistent message passing equations, where M is the total
number of intra-links and inter-links in the NoN.

The derivation of the set of message passing equations
corresponding to our model is provided next. Let us therefore
consider two nodes in the NoN, say iA and jA, connected by an
intra-link. A node iA can send information only if it is active,
i.e. if σiA = 1, and hence the relative message ρiA→jA must be
proportional to σiA . Now, assuming that node iA is active, it
can send a message to node jA only if it receives a message by
at least one of its intra-link neighbors other than jA OR one
of its inter-links neighbors. Thus, the self-consistent equations
describing the information flow in the brain NoN are given by

ρiA→jA = σiA

[
1−

∏
kA∈S(iA)\jA

(1− ρkA→iA )
∏

kB∈F(iA)

(1− ϕkB→iA )
]
,

ϕiA→jB = σiA

[
1−

∏
kA∈S(iA)

(1− ρkA→iA )
∏

kB∈F(iA)\jB

(1− ϕkB→iA )
]
,

[14]
where S(iA) is the set of intra-link neighbors of node iA and
F(iA) is the set of node iA’s inter-links neighbors in module B.
The remaining message passing equations can be obtained by
interchanging the labels for the modules A and B. We note en
passant that products over empty sets S(iA) = ∅ or F(iA) = ∅
in the above message passing equations default to one, due to
the underlying logical OR in our model.

The size of the mutual giant component G across all mod-
ules of the NoN can then be computed from the fixed point
solution for the intra-link and inter-link messages satisfying
the above self-consistent message passing equations (14). Ex-
plicitly, it is given by

G =
( NA∑
iA=1

ρiA +
NB∑
iB=1

ρiB

)/
(NA +NB) , [15]

where the probability ρiA = 0, 1 for a node iA to belong to
the largest connected active cluster is computed as

ρiA = σiA

[
1−

∏
kA∈S(iA)

(1−ρkA→iA )
∏

kB∈F(iA)

(1−ϕkB→iA )
]
, [16]

which can be obtained from the expression for the intra-link
message in Eq. (14) by including the contribution of ρjA→iA
as well.

Strictly speaking, the above message passing equations are
valid only under the assumption that the messages are indepen-
dent, which is true for locally tree-like networks, including the
thermodynamic limit of the class of Erdös-Rényi and scale-free
networks as well as the configuration model (the maximally
random graphs with a given degree distribution [28]) which
contain loops that grow logarithmically in the system size [32].

Nevertheless, it is generally accepted, and confirmed by previ-
ous implementations of CI on single networks [18], that results
obtained for tree-like graphs apply quite well also for loopy
networks [29–31].

Next, we turn our attention to two related, but fundamen-
tally different models. One of them [10], inspired by the power
grid [16], can be simply obtained from the message passing
equations (14) by replacing the underlying logical OR with a
logical AND, as follows

ρiA→jA = σiA

[
1−

∏
kA∈S(iA)\jA

(1− ρkA→iA )
][

1−
∏

kB∈F(iA)

(1− ϕkB→iA )
]
,

ϕiA→jB = σiA

[
1−

∏
kA∈S(iA)

(1− ρkA→iA )
][

1−
∏

kB∈F(iA)\jB

(1− ϕkB→iA )
]
.

[17]
In this model, an active node iA with inter-links to the other
module can send a message ρiA→jA to node jA only if it
receives a message by at least one of its intra-link neighbors
other than jA AND one of its inter-link neighbors.

Similarly, the probability ρiA for a node iA to belong to
the giant mutually connected active component G can for this
model [10] be obtained by replacing the inherent logical OR
in Eq. (16) with the connective AND:

ρiA = σiA

[
1−
∏

kA∈S(iA)

(1−ρkA→iA )
][

1−
∏

kB∈F(iA)

(1−ϕkB→iA )
]
. [18]

We emphasize that Eqs. (17) and (18) are generalizations of the
model [10], which considers only one-to-one inter-link (therein
called dependencies), to arbitrary numbers of inter-links.

The third candidate for a NoN to be considered is the
simplest possible model, which assumes no difference between
intra-module and inter-module connections [2, 17] and hence
it can be described using only the intra-link messages ρi→j ,
which in this case run along links both within and across
modules. Moreover, since there are no dependency links in
this model and nodes do not control each other, the state of
a node simply equals its input σi = ni. The corresponding
message passing equations read

ρi→j = ni

[
1−

∏
k∈S(i)\j

(1− ρk→i)
]
, [19]

where for simplicity we dropped the unneeded distinction
between different module labels.

The probability ρi for a node i to belong to the giant
mutually connected active cluster G can again be obtained by
taking into account also the contribution from ρj→i, as in

ρi = ni

[
1−

∏
k∈S(i)

(1− ρk→i)
]
. [20]

We conclude this discussion by pointing out that the mes-
sage passing approach presented in this section not only allows
to study percolation in NoN in a simple and compact way, but
it also allows to treat the non-random removal of inputs and
hence investigate the effect of atypical or rare configurations
of inputs on the brain state. Moreover, the message passing
approach allows for an intuitive interpretation in terms of
information flow and can be easily adapted to include changes
in the model as well.
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Finally, we recall that the size of the giant mutually con-
nected active component and indeed the NoN’s global commu-
nication efficiency is a function of the input variables niA of
each node comprising the NoN. The aim of the next section is
thus to find and rank the minimal set of nodes whose disrup-
tion (niA = 1→ niA = 0) leads to a breakdown of the NoN’s
global communication capacity in the most efficient way. We
call such nodes influencers.

Theory of Collective Influence in the brain-NoN

Derivation of the cost energy function of influence. Finding
the minimal set of influencers, whose inactivation results in
a breakdown of the NoN’s global communication efficiency,
is a NP-hard combinatorial optimization problem originally
posed by Kempe et al. [19] in the context of maximization
of influence in social network, that is very difficult to solve
in general. In particular, direct minimization of the size
of the mutual giant component over the configurations of
inputs ~n = {n1A , . . . , nNA , n1B , . . . , nNB} is untractable, since
an explicit functional form of G(~n) is not feasible.

Instead, the problem of identifying the set of influencers
in the brain NoN can be mapped onto the problem of opti-
mal percolation [18], which, in turn, can be solved by min-
imizing the largest eigenvalue λ(~n) of the non-backtracking
(NB) matrix of the NoN [18]. The NB matrix controls the
stability of the broken solution G = 0 which corresponds
to {ρiA→jA} = {ρiB→jB} = {ϕiA→jB} = {ϕiB→jA} = 0 and
is defined by taking partial derivatives in the message passing
equations (14), as follows:

M̂ ≡



∂ρkA→lA
∂ρiA→jA

∂ρkB→lB
∂ρiA→jA

∂ϕkA→lB
∂ρiA→jA

∂ϕkB→lA
∂ρiA→jA

∂ρkA→lA
∂ρiB→jB

∂ρkB→lB
∂ρiB→jB

∂ϕkA→lB
∂ρiB→jB

∂ϕkB→lA
∂ρiB→jB

∂ρkA→lA
∂ϕiA→jB

∂ρkB→lB
∂ϕiA→jB

∂ϕkA→lB
∂ϕiA→jB

∂ϕkB→lA
∂ϕiA→jB

∂ρkA→lA
∂ϕiB→jA

∂ρkB→lB
∂ϕiB→jA

∂ϕkA→`B
∂ϕiB→jA

∂ϕkB→`A
∂ϕiB→jA



∣∣∣∣∣∣∣∣∣∣∣∣∣
G=0

[21]

We note that the NB matrix M̂i→j, k→l is defined over the
space of links (see below) and has non-zero entries only when
(i → j, k → l) form a pair of consecutive non-backtracking
edges, i.e. (i → j, j → l) with i 6= l [18] (see also Fig. S1b).
Moreover, powers of the NB matrix count the number of non-
backtracking walks of a given length much in the same way as
powers of adjacency matrices count the number of paths.

The minimization of λ(~n) is performed over the space of
input configurations ~n satisfying the condition (

∑
iA
niA +∑

iB
niB )/(NA +NB) = 1− q, where q denotes the fraction

of zero inputs. The zero solution of the message passing
equations, corresponding to a particular configuration ~n, is
stable if the largest eigenvalue of the respective NB matrix
satisfies λ(~n) < 1. Therefore, the optimal configuration ~ninfl of
influencers (for which niA , njB = 0), can be found by solving

λ(qinfl, ~ninfl) ≡ min
~n
λ(qinfl, ~n) = 1 , [22]

where qinfl denotes the minimal fraction of zero inputs, i.e.
the influencers. To keep notation light, we shall from now on
omit q in λ(q, ~n) ≡ λ(~n), which we assume to be kept fixed.

In order to arrive at an explicit expression for the largest
eigenvalue, we observe that λ(~n) determines the growth rate

of an arbitrary non-zero vector ~w0 after ` iterations with the
NB matrix M̂, provided it has non-vanishing projection onto
the corresponding eigenvector. More precisely, the following
equality holds according to the Power Method:

λ(~n) = lim
`→∞

[
〈w0| M̂` |w0〉
〈w0|w0〉

]1/`

, [23]

where |w0〉 = ~w0 denotes the usual column vector and 〈w0| =
~wT

0 denotes the corresponding row vector.
For finite ` we define 〈w0| M̂` |w0〉 to be the cost energy

function of influence at order-` and denote the `-dependent
approximation to the largest eigenvalue

λ`(~n) ≡
[
〈w0 |M̂` |w0〉
〈w0|w0〉

]1/`

. [24]

In order to derive an analytical expression for λ`(~n), it
is convenient to elevate the NB matrix M̂ from the above
implicit representation over the space of 2(MA+MB+MAB)
× 2(MA+MB+MAB) links, where MA, MB and MAB respec-
tively denote the number of intra-module and inter-module
links, and embed it into an enlarged space of dimension
(NA+NB)×(NA+NB)×(NA+NB)×(NA+NB) [18].

In this enlarged space, the non-vanishing blocks correspond-
ing to the NB matrix of our NoN are obtained from Eqs. (14)
and are given by (the remaining blocks can be obtained by
interchanging the module labels)

∂ρkA→lA
∂ρiA→jA

∣∣∣∣
G=0

= σkAA
in
iA jA

Ain
kA lAδ jA kA (1− δ iA lA )

∂ρkA→lA
∂ϕiB→jA

∣∣∣∣
G=0

= σkAA
out
iB jA

Ain
kA lAδ jA kA

∂ϕkA→lB
∂ρiA→jA

∣∣∣∣
G=0

= σkAA
in
iA jA

Aout
kA lB δ jA kA

∂ϕkA→lB
∂ϕiB→jA

∣∣∣∣
G=0

= σkAA
out
iB jA

Aout
kA lB δ jA kA (1− δ iB lB ) ,

[25]

In the above equations A stands for adjacency matrix and the
superscript ’in’ means that both nodes, represented by the
subscript indices, are within the same module, whereas ’out’
indicates that they are located in distinct modules. We remind
ourselves that the matrix entries at positions (iA, jB) and
(jB , iA) are Aout

iA jB
= Aout

jB iA
= 1 if there exists a connection

(in this case an inter-link) between nodes iA and jB and
Aout
iA jB

= Aout
jB iA

= 0 if there is no connection between these
nodes. The Kronecker deltas reflect the non-backtracking
property underlying the message passing equations (14), which
essentially arises due to the fact that a message is computed on
the basis of incoming messages other than from the destination
it is sent to.

Similarly, the intrinsically 2(MA+MB+MAB) dimensional
starting vector ~w0, can be embedded into a larger space
of dimension (NA+NB)×(NA+NB). Without loss of gen-
erality, we choose |w0〉 = |1〉 as starting vector in the
Power Method Iteration, which translates to |w0〉i, j ≡
(Ain

iA jA
, Ain

iB jB
, Aout

iA jB
, Aout

iB jA
)T over the enlarged vector

space.
In what follows, we are going to develop the general `-th

order expression for the cost energy function of influence
corresponding to the NB matrix of our NoN, which reads
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M̂ =



∂ρkA→lA
∂ρiA→jA

0 ∂ϕkA→lB
∂ρiA→jA

0

0 ∂ρkB→lB
∂ρiB→jB

0 ∂ϕkB→lA
∂ρiB→jB

0 ∂ρkB→lB
∂ϕiA→jB

0 ∂ϕkB→lA
∂ϕiA→jB

∂ρkA→lA
∂ϕiB→jA

0 ∂ϕkA→`B
∂ϕiB→jA

0



∣∣∣∣∣∣∣∣∣∣∣∣
G=0

[26]

To this end, we investigate order by order the cost energy
function until the general expression becomes evident. To
order ` = 1, we find

〈w0| M̂ |w0〉

=
NA+NB∑
i,j,k,l

i j〈w0| M̂ i j k l |w0〉k l

=
NA∑
iA

NA∑
jA

[ NA∑
kA

NA∑
lA

Ain
iA jA

(
∂ρkA→lA
∂ρiA→jA

)
Ain
kA lA

+
NA∑
kA

NB∑
lB

Ain
iA jA

(
∂ϕkA→lB
∂ρiA→jA

)
Aout
kA lB

]

+
NB∑
iB

NA∑
jA

[ NA∑
kA

NA∑
lA

Aout
iB jA

(
∂ρkA→lA
∂ϕiB→jA

)
Ain
kA lA

+
NA∑
kA

NB∑
lB

Aout
iB jA

(
∂ϕkA→lB
∂ϕiB→jA

)
Aout
kA lB

]
+ {A↔ B} ,

[27]

where {A ↔ B} means “the same terms as above but with
interchanged module labels”.

Inserting the relations for the partial derivatives given by
Eq. (25) and summing over all independent indices, we obtain
the following expression for the cost energy function to lowest
order,

〈w0| M̂ |w0〉

=
∑
kA

σkA (kin
kA

+ kout
kA
−1)kin

kA
+ σkA (kin

kA
+ kout

kA
−1)kout

kA

+
∑
kB

σkB (kin
kB

+ kout
kB
−1)kin

kB
+ σkB (kin

kB
+ kout

kB
−1)kout

kB
.

[28]
At this point, it is worth introducing the following notation,

which will appear frequently in subsequent expressions for
higher order terms

ziA ≡ ( kin
iA + kout

iA − 1 ) . [29]
This allows us to rewrite even more compactly the final

expression for the cost energy function of influence at order
` = 1,

〈w0| M̂ |w0〉

=
∑
kA

σkAzkA (kin
kA

+ kout
kA

) +
∑
kB

σkBzkB (kin
kB

+ kout
kB

) . [30]

We proceed to compute the cost energy function to second
order from the square of our NB matrix as follows

〈w0| M̂2 |w0〉 =
NA+NB∑
i,j,k,l,m,n

i j〈w0|M̂ i j k lM̂ k lmn|w0〉mn [31]

where the matrix elements are given by

i j〈w0|M̂ i j k lM̂ k lmn|w0〉mn

= Ain
iAjA

( ∂ρkA→lA
∂ρiA→jA

)[( ∂ρmA→nA
∂ρkA→lA

)
Ain
mAnA

+
( ∂ϕmA→nB
∂ρkA→lA

)
Aout
mAnB

]
+Ain

iAjA

( ∂ϕkA→lB
∂ρiA→jA

)[( ∂ρmB→nB
∂ϕkA→lB

)
Ain
mBnB

+
( ∂ϕmB→nA
∂ϕkA→lB

)
Aout
mBnA

]
+Aout

iBjA

( ∂ρkA→lA
∂ϕiB→jA

)[( ∂ρmA→nA
∂ρkA→lA

)
Ain
mAnA

+
( ∂ϕmA→nB
∂ρkA→lA

)
Aout
mAnB

]
+Aout

iBjA

( ∂ϕkA→lB
∂ϕiB→jA

)[( ∂ρmB→nB
∂ϕkA→lB

)
Ain
mBnB

+
( ∂ϕmB→nA
∂ϕkA→lB

)
Aout
mBnA

]
+ {A↔ B},

[32]
Inserting the appropriate expressions in Eq. (25) and sum-

ming independent indices, we arrive at

〈w0| M̂2 |w0〉

=
∑
kA

σkAzkA

[∑
lA

Ain
kA lAσlAzlA +

∑
lB

Aout
kA lBσlBzlB

]
+
∑
kB

σkBzkB

[∑
lB

Ain
kB lBσlBzlB +

∑
lA

Aout
kB lAσlAzlA

]
.

[33]
Comparing Eq. (30) for the first order term with Eq. (33)

for the second order term, we observe that instead of the
in-degree kin

kA
in the first order expression, we have a sum and

the corresponding adjacency matrix Ain
kA lA

(multiplied by the
factors σlA zlA) in the second order relation, which together
represent exactly kin

kA
NB “steps” from kA towards one of

the neighboring nodes lA ∈ S(kA). The generalization of this
pattern is of course precisely the NB walk (Fig. S1b) in the CI
algorithm we are going to derive.

Performing the same analysis as for the previous orders, we
find for the cost energy function at order ` = 3,

〈w0| M̂3 |w0〉

=
∑
kA

σkAzkA

∑
lA

Ain
kA lA

[∑
mA

Ain
lA mA

(1−δ kA mA )σmAzmA

+
∑
mB

Aout
lA mB

σmBzmB

]
+
∑
kA

σkAzkA

∑
lB

Aout
kA lB

[∑
mB

Ain
lB mB

σmBzmB

+
∑
mA

Aout
lB mA

(1−δ kA mA )σmAzmA

]
+ {A↔ B} ,

[34]
where the factors (1 − δ kA mA ) precisely capture the non-
backtracking property of the walks contributing to the cost
energy of a given configuration ~n, in that they guarantee that
the walk never returns to same node it immediately came
from.

In general, when we go to higher orders ` ≥ 4 of the cost
energy function, the NB walk may cross the same node twice
and hence contain a NB loop (Fig. S1b). It is for instance
possible that a NB walk of length 3, which occurs in the cost
energy function of influence at order ` = 4, starts and ends in
the same node. However, as shown in [18], on locally tree-like
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networks and for large system sizes N = NA + NB , all NB
walks with loops can be neglected to leading order O(N).

Therefore, taking into account only the leading order con-
tributions to the cost energy function of influence, we can
finally write down the general expression for order ` > 1,

〈w0| M̂` |w0〉 =
NA∑
iA

ziA

∑
j∈∂Ball(iA,`−1)

( ∏
k∈P`−1(iA,j)

σk

)
zj

+
NB∑
iB

ziB

∑
j∈∂Ball(iB ,`−1)

( ∏
k∈P`−1(iB ,j)

σk

)
zj ,

[35]

where Ball( iA, ` ) is the set of nodes inside a ball of radius `
around node iA (Fig. 1d), with the radius defined as taking
the shortest path, ∂Ball( iA, ` ) is the frontier of the ball and
P`( iA, j ) is the set of nodes belonging to the shortest path
of length ` connecting iA and j. Note that in the above
expression the nodes j on the boundary of the ball as well as
the nodes k visited during the shortest NB walk connecting iA
and j could be in either of the two modules, which is why we
did not explicitly show their module label. The corresponding
expression for the cost energy function to order ` = 1 is given
in Eq. (30).

If we agree to also consider the center node’s module label
as implicit, we can write the leading order approximation of
the cost energy function of influence for an arbitrary number
of modules to order ` > 1 as:

〈w0| M̂` |w0〉 =
∑
i

zi
∑

j∈∂Ball(i,`−1)

( ∏
k∈P`−1(i,j)

σk

)
zj . [36]

The lowest order expression for arbitrary numbers of mod-
ules is given by

〈w0| M̂ |w0〉 =
∑
i

σi zi ( kin
i + kout

i ) . [37]

As stated in the beginning of this section, the problem
of identifying the optimal set of influencers can be solved by
minimizing the largest eigenvalue λ(~n) of the NB matrix cor-
responding to the NoN, which we related to the minimization
of the leading order approximation of the the cost energy func-
tion of influence given by Eqs. (36) and (37). In what follows,
we propose an efficient algorithm to find the minimal set of
influencers.

Collective Influence algorithm for NoN, CI-NoN. Having shown
that the minimal set of influencers, whose removal of input
causes a breakdown of the giant mutually connected active
component G, can be found by minimizing the cost energy
function of influence, we now proceed to derive the actual
minimization protocol, which we call the Collective Influence
algorithm.

Among all the nodes receiving an input, we want to know
which node iA or iB in either of the two modules causes the
largest drop in the cost energy function of influence when its in-
put is removed (niA = 1→ niA = 0) or (niB = 1→ niB = 0).

Let us therefore briefly review the example of the simple
NoN depicted in Fig. S1 and answer this question for the cost
energy function to order ` = 1, as given in Eq. (30), assum-
ing that all nodes initially receive an input. The important
observation to be made here is that removing the input to

node kB , i.e. setting (nkB = 1 → nkB = 0) affects all three
state variables σkB = σiA = σjA = 0 and hence decreases the
cost energy function by the contribution from all of the three
inactivated nodes, whereas removing the input to either node
iA or node jA only affects their own contribution to the cost
energy function. A moment’s thought reveals that the cru-
cial characteristic of node kB , leading to such a deactivation
pattern, is that both of its neighbors iA and jA have exactly
one inter-link to kB , i.e. their inter-module degree is precisely
kout
iA

= 1 and kout
jA

= 1. In this case, node kB ’s input is pivotal
to the activation/deactivation of its inter-link neighbors iA
and jA.

If we formally define CIcentric
` (iA) to be the contribution to

the cost energy function of influence at order `+ 1 centered
in iA and proportional to σiA , then iA’s Collective Influence
CI ` (iA) is the sum of its own CIcentric

` (iA) and the CIcentric
` (jB)

of all nodes jB in the other module with exactly one inter-link
to iA (Fig. 1d). We call the sum of the CIcentric

` (jB) of all nodes
jB with kout

jB
= 1 the eccentric contribution CIeccentric

` (iA) to
node iA’s Collective Influence.

For an arbitrary number of modules, we define the Collec-
tive Influence of node i as

CIl=0(i) = zi (kin
i + kout

i ) +
∑

j∈F(i) :
kout

j = 1

zj (kin
j + kout

j ) ,

CIl≥1(i) = zi
∑

j∈∂Ball(i,`)

zj +
∑

j∈F(i) :
kout

j = 1

zj
∑

m∈∂Ball(j,`)

zm ,

[38]

where zi ≡ kin
i + kout

i − 1. Here Ball(i, `) is the set of nodes
inside a ball of radius ` centered around node i (Fig. 1d), with
the radius defined as taking the shortest path and ∂Ball(i, `)
denotes the set of nodes residing on the frontier of the ball.
We emphasize that nodes on the boundary of the ball can be
in either of the modules. Indeed, the ball is grown from the
central node following both intra and inter-links and thus may
invade different modules of the brain NoN. Finally, we remark
that the node-eccentric contribution to node i’s Collective
Influence, given by the second term in Eq. (38), is absent in
the single network case [18] and thus presents a genuine new
feature of the brain NoN.

With the Collective Influence measure (38) at our disposal,
we now proceed to specify the algorithmic implementation to
find and rank the minimal set of influencers ensuring global
communication in the brain NoN.

The Collective Influence algorithm is defined as fol-
lows: Starting from the fully activated NoN, where every node
is receiving an input ni = 1, we progressively remove one by
one the inputs (ni = 1→ ni = 0) corresponding to the node
which has the largest CI`(i) value (38), provided it is active
σi = 1 (Fig. 1e). After every removal of an input, the degrees
of the removed node’s neighbors are updated and the CI` val-
ues of the remaining active nodes are recomputed from where
a new top-CI is removed and so on. The algorithm terminates
when the largest active mutually connected component G is
zero. The algorithm’s performance increases by using larger
values of the radius ` of the Ball(i, `), which must however
not exceed the original diameter of the NoN, for otherwise
the Collective Influence is zero CI`(i) = 0. In practice, we

Morone et al. 10.1073/pnas.1620808114 5 of 9



observe that already for ` = 3, 4 the algorithm reaches the top
performance (Figs. 2c, d).

The Collective Influence theory developed above allows us
to compute the minimal fraction qinfl as well as the actual
configuration ~ninfl of influencers whose removal annihilates
the giant active component G and therefore brings the NoN’s
global communication efficiency to a halt. In the case q < qinfl,
however, the giant component is nonzero, a consequence of the
fact that the system of Eqs. (14) has another stable solution dif-
ferent from {ρiA→jA} = {ρiB→jB} = {ϕiA→jB} = {ϕiB→jA}
identically zero: G = 0. Therefore, for q < qinfl the stability
of the new solution G(q) 6= 0 is not controlled by the NB
operator anymore, but a more complicated operator comes
into play that depends on the form of the solution itself. The
solution to this problem was presented in [18] and consists in
implementing a reinsertion scheme. The reinsertion rule used
to obtain the CI curves shown in Figs. 2c, d follows the one
presented in [18] and is defined as follows: given the minimal
set of influencers up to qinfl, we reinsert one by one the inputs
(ni = 0→ ni = 1) corresponding to the node i which joins the
smallest number of active clusters in the NoN when reinserted
ni = 1. In practice, we reinserted a finite fraction of the
total number of inputs that were removed to break the giant
component, before recomputing again the number of clusters
the influencers to be reinserted would join. We arrive in this
way to the minimal set of influencers ranked from top CI to
zero. This list is then used to rank the nodes in the brain.

Method to construct the brain NoN

Dual task experiment. Our brain networks rely on functional
magnetic resonance imaging (fMRI). The fMRI data consists
of time-series of the blood oxygen level dependent (BOLD)
signals based on phase and amplitude response to a dual task
involving visual and auditory stimuli obtained for each voxel.
We use the dual-task experiment on humans explained in detail
in Refs. [9, 11, 22, 27]. The data that we used in this study
can be found at: http://www-levich.engr.ccny.cuny.edu/webpage/
hmakse/software-and-data. The experiment is part of a larger
neuroimaging research program headed by Denis Le Bihan and
approved by the Comité Consultatif pour la Protection des
Personnes dans la Recherche Biomédicale, Hôpital de Bicêtre
(Le Kremlin-Bicêtre, France).

Sixteen participants (7 women and 9 men, mean age, 23,
ranging from 20 to 28) performed a dual-task paradigm: a
visual task of comparing an Arabic number to a fixed reference
and an auditory task of judging the pitch of auditory tone. The
two stimuli were applied to subjects simultaneously. Subjects
were asked to press a key using right and left hand, respectively,
when the number appearing on the screen was larger than a
reference and the tone was high frequency.

Details of NoN reconstruction. The fMRI data we used to con-
struct the brain NoN are taken from Ref. [22]. As outlined in
great detail in Ref. [22], a 3T fMRI detector (Bruker) was uti-
lized to record the blood oxygenation level-dependent (BOLD)
signals from a T2∗-weighted gradient echoplanar imaging se-
quence [repetition time (TR) = 1.5 s; echo time = 40 ms;
angle = 90o; field of view (FOV) = 192 × 256 mm; matrix 64
× 64]. Within this setup, the entire brain was obtained in 24
slices with a thickness of 5mm each. The experimenters also
recorded high-resolution images (three-dimensional gradient

echo inversion-recovery sequence, inversion time = 700 mm;
FOV = 192 × 256 × 256 mm; matrix = 256 × 128 × 256;
slice thickness 1 mm).

Data analysis in Ref. [22], was performed with SPM2 soft-
ware. In order to quantify the phase and periodicity of the
fMRI data, the authors of [22], regressed the BOLD signal for
each participant and trial (8 TRs of 1.5 s) against a sine and
a cosine. To avoid numerical instabilities, Ref. [22] detrended
the raw signal for each voxel within each trial, correcting for
linear drifts and subtracting the mean (the average phase
within each participant and condition was computed using the
appropriate mean for circular quantities). The projections of
the sine and cosine for each voxel j, are given by:

Ajx =
∑
i

si cos
(2π · TR · i

ITI

)
, [39]

and
Ajy =

∑
i

si sin
(2π · TR · i

ITI

)
, [40]

where {si} corresponds to the detrended signal, and j denotes
the voxel number. The inter-trial interval ITI was 12 sec, and
TR 1.5 sec. To account for anatomical differences in brain
morphology when averaging across the participants, Ref. [22]
stereotactically transformed to the standardized coordinate
space of Talairach and Tournoux [(Montreal Neurological In-
stitute) MNI 152 average brain] and smoothed the regression
parameters of the sine and cosine (7 mm full-width at half-
maximum). As described in [27], phase and amplitude were
calculated as

φj = arctan(Ajy/Ajx) ,

Aj =
√

(Ajx)2 + (Ajy)2 ,
[41]

where Ajx and Ajy denote the regression weights of the cosine
and sine for voxel j respectively. The phase was additionally
multiplied by 12/2π s, in order to obtain a fraction of the
stimulation period of 12 s, with a phase of 0 s indicating a
peak activation coinciding with stimulus onset [22].

In order to confine the brain network reconstruction to vox-
els participating in the task setup, [22] estimated the fraction
of the measured phases that are within the expected response
range (ERR). Overall, 64 phase measurements, corresponding
to four conditions per participant, were obtained. On the basis
of previous characterizations of the hemodynamic response
function, Ref. [22] set the ERR to the interval from 2 to 10 s,
thus allowing for region-to-region and inter-condition varia-
tions. The probability for a given number of x measurements
(out of the 64 total) to lie within the ERR can accordingly be
calculated from the binomial distribution, as outlined in [27].
Reference [22] restricted the network analysis to voxels with
more than 48 measurements within the ERR, corresponding
to a binomial probability p < 0.05. It is worth to note that
the authors of [22] evaluated the significance of the phase
variations with delay using a second-level SPM model which
contained all the single-trial phase measurements.

Ref. [22], performed the following two statistical tests with
the collected data. First, they searched for linearly increasing
phases as a function of delay (contrast −2− 1 1 2, accounting
for irregularities in the delay spacing). Second, they looked for
regions with a delay by regime type interaction (contrast 1−1−
11), corresponding to a “psychological refractory period” PRP
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effect. Moreover, measurements of the single-trial response
amplitude were tested with the same SPM model.

Definition of Brain-NoN. The construction of the 3NoN com-
posed of AC-PPC-V1/V2 depicted in Fig. 3a consists of two
main steps: first we identify the nodes belonging to each mod-
ule, and then we create the intra-links and the inter-links
between them (we remark that intra-links and inter-links are
analogous to the strong links and weak links defined in refs [9]
and [11]). In the former step, we use the cross-correlation Cij
between the phases of BOLD response for each pair of voxels
i and j, while in the latter step we use a machine learning
algorithm to infer the pairwise interactions Jij between voxels
from the correlations Cij . By thresholding the values of the
Jij we then create the connections between the voxels inside
and across the modules. In the following discussion, we first
explain how to identify the nodes in the three modules, and
then we move to explain how we infer the connections between
the nodes.

Note that the auditory cortex was activated as a major
cluster in only 7 out of all 16 subjects in our percolation analy-
sis. Fig. S2 shows the spatial location of a subject in which the
auditory cortex was activated as well. While a more complete
study would also include this cluster, we focused on the brain
NoN composed of AC-PPC-V1/V2, which consistently appears
for all 16 participants.

Detecting the modules of the brain NoN. To detect the mod-
ules in the brain NoN we first calculate the cross-correlation
Cij between the phases of BOLD response for each pair of
voxels i and j:

Cij = 1
N

N∑
t=1

cos(φti − φtj) . [42]

where N = 40 is the number of measurements of the phases,
ie, the total number that the stimulus is presented to each sub-
ject. The cross-correlation Cij ranges from −1 to 1. Cij > 0
corresponds to positive correlations, Cij < 0 corresponds neg-
ative correlations, and Cij = 0 indicates the lack of correlation
between a pair of voxels, i and j.

Then we use a procedure inspired by bond percolation
[9, 11, 33] to separate the modules, which is described next. We
progressively consider the voxels that are strongly correlated,
and, by using a threshold T , we create a fictitious link between
two voxels i and j if Cij > T . At a certain percolation
threshold Tc a largest connected component emerges, which
gradually increases with increasing the fraction of occupied
bond. Due to the modular structure of the brain, the size
of the largest component increases with a series of jumps
when the threshold T decreases. This growth pattern of the
largest component in brain reveals that modules defined by
strongly correlated connections merge one by one as T is
lowered. From this observation, we can naturally identify
modules in brain networks resulting from strong correlations
Cij > T [7, 9, 11, 33]. Notice that we use this procedure only
to identify which voxel belongs to which module, but we do
not use the fictitious links as representative of the intra-links
and inter-links. Therefore, from now on we forget about the
fictitious links and we proceed by inferring the connections
between voxels using a machine learning method, as explained
in the next section.

Fig. S2. Spatial location of four modules: the anterior cingulate AC (red), posterior
parietal cortex PPC (green), posterior occipital visual areas V1/V2 (blue), and auditory
cortex (magenta) for a typical subject. The three modules, AC, PPC, and V1/V2
appear consistently for all 16 subjects whereas the auditory cortex appears in only 7
out of all 16 participants.

Inferring the connections. To define the 3NoN composed of
AC-PPC-V1/V2 depicted in Fig. 3a we reconstruct the net-
work’s intra-links and inter-links by using a Machine Learning
technique called Maximum Entropy Modelling (MEM). The
method has been applied to neuronal populations in [23] and
it is similar to methods to infer the weights of the paths con-
necting two brain areas in the computational neuroscience
community [24, 25]. The weight of the links that we infer
are analogous to what is called direct effective connection ma-
trix (deCM) in [25]: they embody the strength of each direct
connection between points in a given brain state.

This method receives in input the set of cross-correlations
{Cij} of the fMRI signals between pair of voxels measured
from the fMRI BOLD response in the 3NoN, and outputs the
intra-modular and inter-modular weights {Jij} of the path
between i and j, also called interaction strengths or couplings
in statistical physics. A value Jij 6= 0 means that there exists
a link between the pair of voxels i and j and the weight of this
link is given by the value of Jij , while if Jij = 0 then there is
no direct connection between i and j.

In order to implement the MEM, we first calculate the cross-
correlation Cij between the phases of BOLD response for each
pair of voxels i and j as in Eq. (42). The cross-correlation
Cij ranges from -1 to 1. Cij > 0 corresponds to positive
correlations, Cij < 0 corresponds to negative correlations, and
Cij = 0 indicates the lack of correlation between a pair of
voxels, i and j.

The MEM is based on the the Maximum Entropy Prin-
ciple, which implies that the most general joint distribution
P (φ1, . . . , φN |Ĵ) of the phases φi ∈ [0, 2π], assuming solely the
knowledge of the cross-correlations Cij , contains only pairwise
(i.e. two body) interactions (or equivalently weights) Jij , and
is explicitly given by the following expression:

P (φ1, . . . , φN |Ĵ) = 1
Z(Ĵ)

∏
i<j

eJij cos(φi−φj) . [43]

The goal of this method is to estimate the interactions {Jij}
such that the cross-correlations computed with the measure
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in Eq. (43) match the observed quantities Cij , i.e.:

〈cos(φi − φj)〉 ≡
∫
d~φ P (φ1, . . . , φN |Ĵ) cos(φi − φj) = Cij .

[44]
The problem of inferring the interaction matrix Ĵ from the
cross-correlation matrix Ĉ is solved by maximizing the log-
likelihood L(Ĵ |Ĉ):

L(Ĵ |Ĉ) =
∑
i<j

JijCij − logZ(Ĵ) , [45]

from which the inferred Ĵ∗ is obtained as:

Ĵ∗ = argmaxĴ L(Ĵ |Ĉ) . [46]

Indeed, by extremizing L(Ĵ |Ĉ) with respect to Jij we find

0 = ∂

∂Jij
L(Ĵ |Ĉ) = Cij−〈cos(φi−φj)〉 → Cij = 〈cos(φi−φj)〉.

[47]
The main difficulty of this method is to compute the quan-

tity logZ(Ĵ), the negative of which is called free energy in
statistical physics. Unfortunately there is no known closed-
form for logZ(Ĵ), and, as a consequence, also to estimate the
interactions Jij that maximize the log-likelihood Eq. (45).

Therefore, to solve the problem, we use a Montecarlo sam-
pling method to compute the averages 〈cos(φi−φj)〉, and then
we use an approximate iterative gradient ascent algorithm to
update the current estimate of the couplings Jij . In practice,
we start from an initial guess {J0

ij} at the initial time t = 0 of
the machine learning algorithm, and then we update the Jij ’s
using the following rule:

Jt+1
ij = Jtij − η

[
〈cos(φi − φj)〉t − Cij

]
+α(Jtij − Jt−1

ij ) , [48]

where the quantities 〈cos(φi − φj)〉t are the cross-correlations
computed via Montecarlo sampling using the current estimate
of the couplings Jtij at time t; η is the learning rate, and α is a
damping factor that we use to help the convergence. We chose
the initial {J0

ij} all equal to 0.1, the learning rate η = 0.01
and the damping factor α = 0.7.

After estimating the couplings Jij we build the 3NoN in two
steps. First of all we establish the intra-links between nodes
(i.e. voxels) belonging to the same module, separately for each
module, and then we connect the nodes in different modules
through the inter-links. Ideally we would like to put a link
between two nodes i and j if and only if the corresponding Jij
is different from zero. However, the inference of the couplings
Jij is affected by noise (both because of the uncertainties in
the measurements of the Cij and in the Montecarlo sampling),
and thus we do not have a sharp classification of zero and
non-zero couplings. Therefore, we define the connections by
thresholding the Jij with the following criterion. First we
compute the standard scores Zij of the raw couplings Jij ,
defined as Zij = (Jij − 〈J〉)/σ, where 〈J〉 and σ are the mean
and the standard deviation of the pool {Jij}. Then, for each
module separately, we consider a threshold T , and we create an
intra-link between two nodes in the same module if Zij > T .

The question of what threshold value T precisely defines the
three networks is resolved using the following procedure. First
we add intra-links independently in each module by choosing
T to be such that the average degree 〈kin〉 of intra-links is the
same for each module, and equal to 〈kin〉 = 5.

Once the intra-links have been established, we proceed to
add inter-links between pairs of voxels in different modules.
Again, we consider a threshold T and we create an inter-link
between two nodes i and j in two different modules if Zij > T .
The threshold T is chosen to be such that the average 〈kout〉
of the degree of the inter-links is 〈kout〉 = 0.5.

From this procedure we identify three predominant clus-
ters emerging in all subjects as in previous work of dual-task
data [11]: anterior cingulate (AC), posterior parietal cortex
(PPC), and posterior occipital cortex (V1/V2) (Fig. 3a). The
average in-degree is 〈kin〉 = 5 and out-degree 〈kout〉 = 0.5.
The network data for the subject shown in Fig. 3 can be
downloaded at: http://www-levich.engr.ccny.cuny.edu/webpage/
hmakse/software-and-data.

Collective Influence Map of the brain: CI-map

Once we construct the brain NoN, we can directly identify the
location of influential nodes, through the collective influence
theory. First, we compute the Collective Influence Eq. (8)
in the main text for the brain NoN of each subject using
` = 3 For other `, we found no relevant change of the results,
and increasing ` leads to degrading the algorithm since the
networks are small and the maximum diameter is reached.
We apply the adaptive CI algorithm explained in SI Text.
Then, we are able to find the core nodes in the brain for a
given subject according to the CI score. The typical result for
the mutually connected giant component is shown in Fig. 3
for a given subject. We identify the most influential nodes
in the brain network as those obtained before the optimal
percolation transition at the critical point qinfl. After finding
the top CI voxels for each subject, we obtain the Collective
Influence CI-map of the brain showing the spatial distribution
of influencers, averaged over 16 subjects.

Since the number of top influencers (those included up
to qinfl) varies with each subject (the number of nodes in
the 3NoN is not the same across subjects), and to facilitate
averaging across different subjects, we measure the ranking of
the CI for each voxel and introduce the normalized influence
by following,

RCI(i) = r0 − ri − 1
r0

, [49]

where ri is the ranking of a node i and r0 is the ranking of
a baseline chosen arbitrarily. RCI(i) = 1 corresponds to the
highest CI node and RCI(i) decreases with decreasing ri. In
this study, we set r0 as the ranking of top 15% node. Then,
we regard the sum of RCI(i) as the representative influence
of a voxel i, over all subjects. In our experiments, the sum
of RCI ranges from 0 to 5.2 and the higher value, the more
influential region.

The CI-map in Fig. 3 reveals the most influential regions
in the brain during dual-task experiments. The spatial distri-
bution of core regions predicted by CI algorithm is consistent
with well-known functions of each modules as well. To be
specific, the most influential regions (top CI nodes) are mainly
located in the AC module which is recruited for top-down
and bottom-up control. The PPC region contains a smaller
portion of influential nodes next to the AC module since the
PPC is responsible for both top-down and bottom-up control
as well. In contrary, the influential voxels are rarely located
in the V1/V2 module, which is involved in mostly process-
ing of visual signal and bottom-up control. We conclude by
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saying that our theory has recently been tested in rats using
pharmacogenetic interventions targeting the neural influencers
responsible for memory consolidation [26].
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