Downloaded from https://www.pnas.org by "Bobst Library, New Y ork University" on October 18, 2022 from I P address 216.165.95.181.

Check for
updates

Fibration symmetries uncover the building blocks

of biological networks

a,b,1 a,b,1

, and Hernan A. Makse

Flaviano Morone®®', lan Leifer

a,b,1,2

aLevich Institute, City College of New York, New York, NY 10031; and PPhysics Department, City College of New York, New York, NY 10031

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved February 18, 2020 (received for review August 22, 2019)

A major ambition of systems science is to uncover the build-
ing blocks of any biological network to decipher how cellular
function emerges from their interactions. Here, we introduce a
graph representation of the information flow in these networks
as a set of input trees, one for each node, which contains all
pathways along which information can be transmitted in the net-
work. In this representation, we find remarkable symmetries in
the input trees that deconstruct the network into functional build-
ing blocks called fibers. Nodes in a fiber have isomorphic input
trees and thus process equivalent dynamics and synchronize their
activity. Each fiber can then be collapsed into a single representa-
tive base node through an information-preserving transformation
called “symmetry fibration,” introduced by Grothendieck in the
context of algebraic geometry. We exemplify the symmetry fibra-
tions in gene regulatory networks and then show that they
universally apply across species and domains from biology to
social and infrastructure networks. The building blocks are clas-
sified into topological classes of input trees characterized by
integer branching ratios and fractal golden ratios of Fibonacci
sequences representing cycles of information. Thus, symmetry
fibrations describe how complex networks are built from the bot-
tom up to process information through the synchronization of
their constitutive building blocks.

complex networks | fibration symmetry | statistical mechanics |
biological networks

central theme in systems science is to break down the sys-
tem into its fundamental building blocks to then uncover the
principles by which complex collective behavior emerges from
their interactions (1-3). In number theory, every natural number
can be represented by a unique product of primes. Thus, prime
numbers are the building blocks of natural numbers. This mathe-
matical notion of building blocks is extended to the more abstract
notion of group theory since finite groups can also be factored
into simple subgroups (4). The latter example, entirely abstract
as it may be, has important implications for natural systems due
to the fundamental relationship between group theory and the
notion of symmetry that has led to the discovery of the funda-
mental building blocks of matter, such as quarks and leptons
(3, 5). Here we ask whether similar principles of symmetry can
uncover the fundamental building blocks of biological networks
(1, 2, 6, 7). Primary examples of these networks are gene regu-
latory networks that control gene expression in cells (2, 8-10);
as well as metabolic networks, cellular processes and pathways,
neural networks, and ecosystems; and, beyond biology, other
information-processing networks like social and infrastructure
networks (7). Previous studies have identified building blocks or
“network motifs” (2, 6, 8) by looking for patterns in the network
that appear more often than they would by pure chance. The
crux of the matter is to test whether the building blocks of these
networks obey a predictive principle that explains how the cell
functions and whether such a principle can be expressed in the
language of symmetries.
We introduce the use of symmetries in biological networks
by analyzing the transcriptional regulatory network of bacterium
Escherichia coli (11), since this is a well-characterized network.
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We find that this network exhibits fibration symmetries (12-14),
first introduced by Grothendieck (12) in the context of algebraic
geometry.

Symmetry fibrations are morphisms between networks that
identify clusters of synchronized genes (called fibers) with iso-
morphic input trees. Genes in a fiber are collapsed by a symmetry
fibration into a single representative gene called the base. The
fibers are then the synchronized building blocks of the genetic
network and symmetry fibrations are transformations that pre-
serve the dynamics of information flow in the network. We use
this symmetry principle to classify the building blocks into topo-
logical classes of input trees characterized by integer branching
ratios and complex topologies with golden ratios of Fibonacci
sequences representing cycles in the network. We then show that
symmetry fibrations explain synchronization patterns of gene
coexpression in cells and universally apply to a range of complex
networks across different species and domains beyond biology.

Results

We search for symmetries in the E. coli transcriptional regulatory
network [most updated compilation at RegulonDB (11)] where
nodes are genes and a directed link represents a transcriptional
regulation (SI Appendix, section IIT).

A directed link from a source gene i to a target gene j in a
transcriptional regulatory network represents a direct interaction
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Fig. 1. Definition of input tree, symmetry fibration, fiber, and base. (4) The circuit controlled by the cpxR gene regulates a series of fibers as shown by the
different-colored genes. The circuit regulates more genes represented by the dotted lines which are not displayed for simplicity. The full lists of genes and
operons in this circuit are in S/ Appendix, Table VI, ID nos. 27, 28, and 54. (B) The input tree of representative genes involved in the cpxR circuit showing
the isomorphisms that define the fibers. For each fiber, we show the number of paths of length i — 1 at every layer of the input tree, a;, and its branching
ratio n. (C) Isomorphism between the input trees of baeR and spy. The input trees are composed of an infinite number of layers due to the autoregulation
loop at baeR and cpxR. How does one prove the equivalence of two input trees when they have an infinite number of levels? A theorem proved by Norris
(26) demonstrates that it suffices to find an isomorphism up to N — 1 levels, where N is the number of nodes in the circuit. Thus, in this case, two levels are
sufficient to prove the isomorphism. (D) Symmetry fibration v transforms the cpxR circuit G into its base B by collapsing the genes in the fibers into one.
(E and F) Symmetry fibration of the fadR circuit (E) and its isomorphic input trees (F). Full list of genes in this circuit appears in S/ Appendix, Table VI, ID
nos. 3, 4, and 58. (G) Symmetric genes in the fiber synchronize their activity to produce the same activity levels. We use the mathematical model of gene
regulatory kinetics from ref. 8 (sigmoidal interactions lead to qualitatively similar results) to show the synchronization inside the fiber baeR-spy when the
fiber is activated by its regulator cpxR. Note that cpxR does not synchronize with the fiber.
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where gene ¢ encodes for a transcription factor that binds to
the binding site of gene j to regulate (activate or repress) its
expression. Such a link represents a regulatory “message” sent
by the source to the target gene using the transcription factor
as a “messenger.” This process defines the “information flow”
in the system which is not restricted to two interacting genes,
but it is transferred to different regions within the network that
are accessible through the connecting pathways. The information
arriving to a gene contains the entire history transmitted through
all pathways that reach this gene. We formalize this process of
communication between genes with the notion of “input tree”
of the gene. In a network G = (N¢, E¢) with Ng nodes and E¢
directed edges, for every gene i € N¢ there is a corresponding
input tree, denoted as T3, which is the tree of all pathways of G
ending at i. More precisely, T; is a rooted tree with a selected
node 5 at the root, such that every other node j in the tree rep-
resents the initial node of a path in the network ending at .

Next, we analyze the input trees in the E. coli subcircuit shown
in Fig. 14 regulated by gene cpxR which regulates its own expres-
sion (via an autoregulation activator loop) and also regulates
other genes as shown in Fig. 14. Gene cpxR is not regulated by
any other transcription factor in the network, so we say that this
gene forms its own “strongly connected component”; see below.
Therefore, it is an ideal simple circuit to explain the concept of
fibration.

Input Tree Representation. In practice, the input tree of a gene is
constructed as follows (S Appendix, section IV.A). Consider the
circuit in Fig. 14. The input tree of gene spy depicted in Fig. 1B
starts with spy at the root (first layer). Since this gene is upregu-
lated by baeR and cpxR, then the second layer of the input tree
contains these two pathways of length 1 starting at both genes.
Gene baeR is further upregulated by cpxR and by itself through
the autoregulation loop and cpxR is also autoregulated. Thus, the
input tree continues to the third layer taking into account these
three possible pathways of length 2 from the source gene to the
spy gene. The procedure now continues, and since there are loops
in the circuit, the input tree has an infinite number of layers.

The input tree formalism is a powerful framework to search
for symmetries in information-processing networks, in that it
replaces the canonical notion of a single trajectory with the set
of all possible “histories” from an initial to a final state of the
network, and this makes, in practice, it reasonably straightfor-
ward to “guess” a type of symmetry which is not apparent in the
classical network framework. Based on results from refs. 13-16,
we show in Symmetry Fibration Leads to Synchronization that if
two input trees have the same “shape,” then the genes at the
root of the input trees synchronize their activity (17-23), even
though their input trees are made of different genes. This infor-
mal notion of equivalence is formalized by isomorphisms. An
isomorphism between two input trees is a bijective map that pre-
serves the topology of the input trees including the type of links.
Specifically, a map 7: T — T’ is an isomorphism if and only if
for any pair of nodes a and b of T connected by a link, the pair
of nodes 7(a) and 7(b) of T” is connected by the same type of
link (SI Appendix, section IV.B). In practice, this means that iso-
morphic input trees are “the same” except for the labeling of
the nodes. Genes with isomorphic input trees are symmetric and
synchronous. We quantify this result, next, by introducing the
concept of symmetry fibration (13).

Symmetry Fibration of a Network. The set of all input tree iso-
morphisms defines the symmetries of the network, which can
be described by a “Grothendieck fibration” (12). The origi-
nal Grothendieck definition of fibration is between categories
(12), so the passage to a definition of fibration between graphs
requires one to associate a category with a graph and rephrase
Grothendieck’s definition in elementary terms. Different cate-
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gories may be associated with a graph, giving rise to different
notions of fibrations between graphs. The notion of fibration that
we use henceforth has been introduced in computer science as a
“surjective minimal graph fibration” (13, 15).

In general, a graph fibration G = (N¢, E¢) is any morphism

Yv:G—B [1]

that maps G to a graph B=(Np, Eg) (with Np nodes and Ep
edges) called the “base” of the graph fibration v (SI Appendix,
section IV.C). In this work we consider a surjective minimal
graph fibration (13) which is a graph fibration ¢ that maps all
nodes with isomorphic input trees, comprising a “fiber,” to a
single node in B, thus producing the minimal base of the net-
work. In this case, the base B consists of a graph where all genes
in a fiber have been collapsed into one representative node by
the minimal fibration. Thus, a surjective minimal graph fibra-
tion, hereafter called symmetry fibration for the sake of lexical
convenience, leads to a dimensional reduction of the network
into its irreducible components. Crucially, a symmetry fibration
is a dimensional reduction that preserves the dynamics in the
network as we show next.

Symmetry Fibration Leads to Synchronization. Next, we explain the
connection between fibration and synchrony in a generality that
is needed to justify our results following refs. 15 and 16. To
describe the dynamical state of each gene in the transcriptional
regulatory network, we first attach a phase space to each node
in G = (Ng, E¢) by considering a map P: N¢ — M that assigns
each node i € N¢ to the phase space of the node denoted by
the manifold M. For example, in a transcriptional regulatory
network we assign to each gene i € Ng the phase space of real
numbers M =R. Then, the state of each gene is described by
z;(t) € R, representing the expression level of the gene i at time
t, which is typically measured by mRNA concentration of gene
product. We then obtain the total phase space of G as the
product PG =T,y P(2).

The fibers partition the graph G into unique and nonover-
lapping sets IT = {II,, ..., II.}, such that II, U-- - UIIl, = G and
I, NI, =0 if k A1 (24). We denote ¢ ~1 j when the input trees
of ¢ and j are isomorphic and belong to the same fiber IIj. That
is, 3k | 4,7 € II;, and there exists a symmetry fibration that sends
both nodes to the same node in the base, (i) =(j). DeVille
and Lerman (15) showed that symmetry fibrations induce robust
synchronization in the system (theorem 4.3.1 in ref. 15). In par-
ticular, it was shown that if ¢ is a symmetry fibration, then—by
proposition 2.1.12 in ref. 15—there exists a map Py : PB — PG
that maps the total phase space of the base B, named PB, to the
total phase space of the graph G. This map creates a polysyn-
chronous subspace of synchronized solutions in fibers: A=
{z € PG | z;(t) = z;(t) whenever (i) =1(j)}, where each set
of synchronous components of this subspace corresponds to a
fiber in IT (lemma 5.1.1 in ref. 15; see also ref. 16). In other words,
Ar is a polysynchronous subspace of PG, such that components
z;, ¢ € x synchronize (i.e., z;(t) = z;(t)) whenever the symmetry
fibration 1) sends them to the same node in B.

According to these results, we interpret synchronous genes
to process the same information received through isomorphic
pathways in the network, and, accordingly, we interpret a sym-
metry fibration as a transformation that preserves the dynamics
of information flow since it collapses synchronous nodes in fibers
(redundant from the point of view of dynamics) into a common
base with identical dynamics to those of the fiber.

Synchronous nodes in a fiber induced by symmetry fibra-
tion correspond to the “minimal balanced coloring” in ref. 14.
A balanced coloring assigns two nodes the same color only if
their inputs, self-consistently, receive the same content of col-
ored nodes, whence the term “balanced.” Thus, the flow of
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information arriving to genes in a fiber is analogous to a process
of assigning a color to each gene such that each gene “receives”
the colors from adjacent genes via incoming links and “sends”
its color to the adjacent genes via its outgoing links. The nodes
in a fiber have the same color symbolizing the fact that they
synchronize. The nodes with the same color in the balanced col-
oring partition (14) correspond to fibers induced by symmetry
fibrations (15). We use the minimal balanced coloring algorithm
proposed in ref. 25 for the computation of minimal bases (24) to
find fibers (SI Appendix, section V).

Strongly Connected Components of the E. coli Network. The input
trees in the E. coli cpxR circuit are displayed in Fig. 1B. The input
trees of baeR and spy are isomorphic and define the baeR-spy fiber
(Fig. 1C). We call this circuit a feedforward fiber (FFF). The input
tree of cpxR is not isomorphic to either baeR or spy, and there-
fore cpxR is not symmetric with these genes, but it is isomorphic
to bacA, slt, and yebE forming another fiber. Likewise, genes ung,
tsr, and psd are all isomorphic, composing another fiber (Fig. 1B).
Fig. 1D shows the symmetry fibration ¢ : G — B that collapses the
genes in the fibers to the base B. Fig. 1E shows another exam-
ple (of many) of a single connected component, fadR, and its
corresponding isomorphic input trees (Fig. 1F), fibers, and base.
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The dynamical state of a gene is encoded in the topology of
the input tree. In turn, this topology is encoded by a sequence,
a;, defined as the number of genes in each ith layer of the
input tree (Fig. 1B). The sequence a; represents the number
of paths of length ¢ —1 that reach the gene at the root. This
sequence is characterized by the branching ratio n of the input
tree defined as a;11/a; —_n which represents the multiplica-

tive growth of the number of paths across the network reaching
the gene at the root. For instance, the input trees of genes
baeR-spy (Fig. 1B) encode a sequence a; = 4 with branching ratio
n =1 representing the single (n = 1) autoregulation loop inside
the fiber.

Beyond several single-gene strongly connected components
like those shown in Fig. 1, we find that the E. coli network
has other strongly connected components (in a strongly con-
nected component, each gene is reachable from every other
gene; SI Appendix, section VI), three in total, which regu-
late more involved topologies of fibers. We find 1) a two-
gene strongly connected component composed of master reg-
ulators crp-fis involved in a myriad of functions like carbon
utilization (Fig. 2 A, Top), 2) a five-gene strongly con-
nected component involved in the stress response system (S7
Appendix, Fig. S7), and 3) the largest strongly connected
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Strongly connected components of the genetic network and synchronization of gene coexpression in the fibers in E. coli. (A, Top) Two-gene

connected component of crp-fis. This component controls a rich set of fibers as shown. We also show the symmetry fibration collapsing the graph to
the base. We highlight the fiber uxuR-IlgoR which sends information to its regulator exuR and forms a 2-Fibonacci fiber |p, =1.6180.., £=2), as well
as the double-layer composite |add — oxyS) = |0, 1)@ | 1, 1). (A, Bottom) Coexpression correlation matrix calculated from the Pearson coefficient between
the expression levels of each pair of genes in A, Top. Synchronization of the genes in the respective fibers is corroborated as the block structure of the matrix.
(B) The core of the E. coli network is the strongly connected component formed by genes involved in the pH system as shown. This component supports two
Fibonacci fibers: 3-FF and 4-FF and fibers as shown. Open colored circles indicate genes that are in fibers and also belong to the pH component.
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component at the core of the network which is composed
of genes involved in the pH system that regulate hydrogen
concentration (Fig. 2B). Each of these three components reg-
ulates a rich variety of fiber topologies which are collapsed
into the base by the symmetry fibration ¢ : G — B, as shown
in Fig. 2B.

Fiber Building Blocks. We find that the transcriptional regulatory
network of E. coli is organized in 91 different fibers. The com-
plete list of fibers in E. coli is shown in SI Appendix, section VII
and Table VI and the statistics are shown in SI Appendix, Table
I. Plots of each fiber are shown in Dataset S1. We find a rich
variety of topologies of the input trees. Despite this diversity,
the input trees present common topological features that allow
us to classify all fibers into concise classes of fundamental “fiber
building blocks” (Fig. 3 4 and B). We associate a building block
to a fiber by considering the genes in the fiber plus the external
incoming regulators of the fiber plus the minimal number of their
regulators in turn that are needed to establish the isomorphism

in the fiber. When the fiber is connected to any external regu-
lator, either via a direct link or through a path in the strongly
connected component forming a cycle, then the genes in this
cycle are considered part of the building block of the fiber, since
such a cycle is crucial to establish the dynamical synchronization
state (when there is more than one cycle, the shortest cycle is
considered).

We find that the most basic input tree topologies can be clas-
sified by integer “fiber numbers” | n, ¢) reflecting two features:
1) infinite n-ary trees with branching ratio n representing the
infinite pathways going through n loops inside the base of the
fiber and 2) finite trees representing finite pathways starting at ¢
external regulators of the fiber. The most basic fibers in E. coli
have three values of n=0,1,2 (Fig. 34): 1) fibers with n=0
loops, called star fibers (SF); 2) fibers with n =1 loop, called
chain fibers (CF); and 3) fibers with n =2 loops, called binary-
tree fibers (BTF). This classification does not take into account
the types of repressor or activator links in the building blocks,
which lead to further subclasses of fibers that determine the type
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Fig. 3. Classification of building blocks in E. coli. (A) Basic fiber building blocks. These building blocks are characterized by a fiber that does not send back
information to its regulator. They are characterized by two integer fiber numbers: | n, £). We show selected examples of circuits and input trees and bases.
The full list of fibers appears in S/ Appendix, Table VI and Dataset S1. The statistical count of every class is in S/ Appendix, Table I. Bottom example shows a
generic building block for a general n-ary tree | n, £) with ¢ regulators. (B) Complex Fibonacci and multilayer building blocks. These building blocks are more
complex and characterized by an autoregulated fiber that sends back information to its regulator. This creates a fractal input tree that encodes a Fibonacci
sequence with golden branching ratio in the number of paths a; versus path length, i — 1. When the information is sent to the connected component that
includes the regulator, then a cycle of length d is formed and the topology is a generalized Fibonacci block with golden ratio ¢4 as indicated. We find three
such building blocks: 2-FF, 3-FF, and 4-FF. Bottom panel shows a multilayer composite fiber with a feedforward structure.
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of synchronization (fixed point, limit cycles, etc.) and thus the
functionality of the fibers.

Fig. 34 shows a sample of dissimilar circuits that can be con-
cisely classified by | n, £) (full list in Dataset S1). For instance, the
n=0 SF class includes dissimilar circuits like |arcZ —ydeA) =
|0, 1), |dcuC — ackA) = |0, 2), which is a bifan network motif (2),
and generalizations with £ =3 regulators like |dcuR —aspA) =
|0, 3) (Fig. 34, Top). The main feature of these building blocks is
that they do not contain loops and therefore the input trees are
finite. The CF class contains n = 1 loop in the fiber and therefore
an infinite chain in the input tree, like the autoregulated loop
in the fiber |##tdR) =|1,0). We note that while the input tree is
infinite, the topological class is characterized by a single number
n =1 concisely represented in the base. Furthermore, a theorem
proved by Norris (26) demonstrates that it suffices to test Ng — 1
layers of the input trees to prove isomorphism, even though the
input tree may contain an infinite number of layers. Adding one
external regulator (¢ =1) to this circuit converts it to the purine
fiber |purR) =1, 1) which is an example of a FFF, like the baeR
circuit in Fig. 14. This circuit resembles a feedforward loop motif
(2), but it differs in the crucial addition of the autoregulator loop
at purR that allows genes purR and pyrC to synchronize. When
another external regulator is added, we find the idonate fiber
lidnR) = |1, 2). More elaborated circuits contain two autoregu-
lated loops and feedback loops featuring trees with branching
ratio n = 2.

Fibonacci Fibers. So far we have analyzed building blocks that
receive information from the external regulators in their respec-
tive strongly connected components, but do not send back
information to the external regulators. These topologies are
characterized by integer branching ratios, n =0, 1,2, as shown
in Fig. 34. We find, however, more interesting building blocks
that also send information back to their regulators. These circuits
contain additional cycles in the building blocks that transform the
input trees into fractal trees characterized by noninteger fractal
branching ratios. Notably, the building block of the fiber uxuR-
IgoR that is regulated by the connected component crp-fis (Fig. 2)
forms an intricate input tree (Fig. 3 B, Top) where the number
of paths of length ¢ — 1 is encoded in a Fibonacci sequence a;,=
1, 3,4, 7, 11, 18, 29, ... characterized by the Fibonacci recur-
ring relation a1 =1, a2 =3, and a; = a;—1 + a;—2 for ¢ > 2. This
sequence leads to the noninteger branching ratio known as the
golden ratio: aiy1/a; —— @ =(1+ V5)/2=1.6180...
7 oo

This topology arises in the genetic network due to the combi-
nation of two cycles of information flow. First, the autoregulation
loop inside the fiber at uxuR creates a cycle of length d = 1 which
contributes to the input tree with an infinite chain with branch-
ing ratio n = 1. This sequence is reflected in the Fibonacci series
by the term a; = a;—1. The important addition to the building
block is a second cycle of length d =2 between uxuR in the
fiber and its regulator exuR: uxuR — exuR — uxuR. This cycle
sends information from the fiber to the regulator and back to the
fiber by traversing a path of length d =2 that creates a “delay”
of d =2 steps in the information that arrives back to the fiber
(Fig. 3 B, Top). This short-term “memory” effect is captured by
the second term a; = a;—2 in the Fibonacci sequence leading to
a; = a;—1 + a;—2 and the golden ratio. We call this topology a
Fibonacci fiber (FF).

This argument implies that an autoregulated fiber that fur-
ther regulates itself by connecting to its connected component
via a cycle of length d encodes a generalized Fibonacci sequence
of order d defined as a; = a;—1 + a;—4 with generalized golden
ratio ¢4 (Fig. 3 B, Top, fourth row). We find such a Fibonacci
sequence in the evgA4-nhaR fiber building block linked to the pH
strongly connected components shown in Fig. 2B. This fiber con-
tains an autoregulation cycle inside the fiber and also an external

Morone et al.

cycle of length d =4 through the pH strongly connected com-
ponent: evgd — gad E — gadX — hns — evgA (Fig. 3 B, Top,
third row). This topology forms a fractal input tree with sequence
a; = a;—1 + a;—4 (sequence A003269 in ref. 27) and branching
golden ratio ¢4 =1.38028... We call this topology 4-Fibonacci
fiber, 4-FF. Generalized Fibonaccis appear inside strongly con-
nected components, like the resB-adiY 3-FF in the pH system
(Fig. 3 B, Top, second row). Likewise, if the network contains
many cycles of varying length up to a maximum d, the Fibonacci
sequence generalizes to a; = ai—1 + ai—2+ - - -+ @i—1—q + Gi—d,
and the branching ratio satisfies d = — % (28).

Multilayer Composite Fibers. Building blocks can also be com-
bined to make composite fibers, like prime numbers or quarks
can be combined to form natural numbers or composite particles
like protons and neutrons, respectively. The ability to assem-
ble fiber building blocks to make larger composites is important
in that it helps to understand systematically higher-order func-
tions of biological systems composed of many genetic elements.
We discover a particular type of composite made up of two
elementary building blocks that we name multilayer composite
fiber. For instance, the double-layer add-oxyS fiber in the crp-
fis connected component (Figs. 24 and 3 B, Bottom and ID 7 in
SI Appendix, Table VI and Dataset S1) is a composite |add —
oxyS)=10,1) ® |1, 1) made of a series of genes composing a sin-
gle fiber of type |0, 1) = |add, dsbG, gor,grxA, hemH , oxyS, trxC)
that are regulated by two different transcription factors rbsR and
oxyR that form another fiber of type |1,1) = |rbsR, ozyR). This
composite is of importance since it allows for information to be
shared between two genes, for instance add and oxyS, which are
not directly connected (in this case, separated by a distance in
the network of length 2 from crp).

Composite fibers satisfy a simple engineering “sum rule”:
elementary fibers are composed in series of fibers in a pre-
defined order where the first layer is represented by an entry
fiber (carrying transcription factors), and the last layer is formed
by a terminator fiber of output genes (encoding enzymes), as
shown in Fig. 3 B, Bottom. This multilayer composite fiber is
biologically significant because genes in the output layer syn-
chronize a genetic module that implements the same function
even though the genes in the module are not directly con-
nected and, indeed, can be at far distances in the network. Such
functionally related modules could not be identified by modu-
larity algorithms (29) which cluster nodes in modules of highly
connected nodes.

We find that composite fibers are dominant in eukaryotes
(yeast, mice, humans; see Fibration Landscape across Biologi-
cal Networks, Species, and System Domains). They resemble the
building blocks of multilayered deep neural networks where each
subsequent gene in the layer synchronizes despite the fact that
nodes can be distant in the network. More generally, compos-
ite fibers with multiple layers streamline the construction of
larger aggregates of fibration building blocks, performing more
complex function in a coordinated fashion. These composite
topologies complete the classification of input trees.

Fibration Landscape across Biological Networks, Species, and
System Domains. To study the applicability of fibration symme-
tries across domains of complex networks we have analyzed
373 publicly available datasets (SI Appendix, section VIII). Full
details of each network and results can be accessed on GitHub at
https://github.com/makselab/fibrationData/blob/master/datasets.
xlsx. The codes to reproduce this analysis are on GitHub at
https://github.com/makselab (SI Appendix, section V). The
full datasets are on GitHub at https://github.com/makselab/
fibrationData/blob/master/rawData.zip. We analyze biological
networks spanning from transcriptional regulatory networks,
metabolic networks, cellular processes networks and signaling
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pathways, disease networks, and neural networks. We span
different species ranging from Arabidopsis thaliana, E. coli,
Bacillus subtilis, Salmonella enterica, Mycobacterium tuberculosis,
Drosophila  melanogaster, Saccharomyces cerevisiae (yeast),
and Mus musculus (mouse) to Homo sapiens (human). The
topological fiber numbers |n,¢) allow us to systematically
classify fibers across the different domains in a unifying
way. We find that fibration symmetries are found across all
biological processes and domains. The fiber distributions for
each type of biological network calculated by summing over
the studied species are displayed in Fig. 44 and the fiber
distributions for each species calculated over the type of
biological networks are shown in Fig. 4B. Our analysis allows
us to investigate the specific attributes and commonalities of
the fiber building blocks inside and across biological domains.
We find a varied set of fibers that characterize the biological
landscape. Certain features of the fiber number distribution
are visible in the transcriptional networks in Fig. 44. For
instance, a tail with ¢ is seen in the n =0 class as well as in
the n=1 class. Across species (Fig. 4B), bacteria like E. coli
or B. subtilus display a majority of n =0 building blocks, while
higher-level organisms like yeast, mice, and humans display a
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majority of more complex building blocks like multilayers and
Fibonaccis.

To test the existence of symmetry fibrations across other
domains we extend our studies to complex networks beyond
biology ranging from social, infrastructure, internet, software,
and economic networks to ecosystems (details of datasets
in SI Appendix, section VIII). Fig. 4C shows the obtained
fiber distributions for each domain. A normalized compar-
ison across domains is visualized in Fig. 4D, showing the
cumulative number of fibers over all domains and species per
network size of 10* nodes. The results support the appli-
cability of the concept of symmetry fibration beyond biol-
ogy to describe the building blocks of networks across all
domains.

Gene Coexpression and Synchronization via Symmetry Fibration.
We have shown in Symmetry Fibration Leads to Synchronization
that fibers in networks determine cluster synchronization in the
dynamical system. In a gene regulatory network, symmetric genes
in a fiber synchronize their activity to produce gene coexpression
levels that sustain cellular functions. We corroborate this result
numerically in Fig. 1G in the particular example of the baeR-spy
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Fig. 4. Fibration landscape across domains and species. (A) Fibration landscape for biological networks. Shown is the total number of fiber building blocks
across five types of biological networks analyzed in the present work. The count includes the total number of fibers in the networks of each biological type
considering all species analyzed for each type (S/ Appendix, Table 1V). (B) Fibration landscape across species. Shown is the count of fibers across each analyzed
species. Each panel shows the count over the different types of biological networks (E. coli contains only the transcriptional network; see S/ Appendix, Table
1IV). (C) Fibration landscape across domains. Shown is the count of fibers across the major domains studied. The biological domain panel is calculated over all
networks and species in A and B. (D) Global fibration landscape. Shown is the cumulative count of fibers in all domains in C. The cumulative count represents
the total number of fibers per network of 10% nodes. Specifically, the quantity is calculated as the total number of fibers divided by the total number of

nodes in all networks per domain multiplied by 10%.
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FFF in E. coli, and this result applies to all fibers, irrespective of
the dynamical system law.

To exemplify the synchronization in fibers, we consider the
dynamics in the composite fiber |add — ozyS)=10,1)®|1,1)
depicted in Figs. 24 and 3 B, Bottom, which is composed of
autoregulator 1= crp, and two layers of fibers: 2=rbsR, 3=
ozyR and 4= add, 5= oxyS (we consider here a reduced fiber
for simplicity, and we add the autoregulator to crp to the building
block for completeness). Graph G = { N, E¢} consists of Ng =
{1,2,3,4,5}, Ea={1—1,1-21-3,242,3-3,2—4,3—
5} (H refers to repressor and — to activation), and a five-
dimensional total phase space PG = R® with state vector X (t) =
{z1(t), 22(¢), 23(t), z4(1), 25 (¢) } describing the expression levels
of each gene’s product (e.g., nRNA concentration).

The symmetry fibration ¢ : G — B collapses the graph G
into the base B={Ngp, Gp}, where Np={a,b,c} and Ep=
{e¢—a,a—b,b1b,b— c}. The symmetry fibration acts on
the nodes (1) = a, ¥(2) =¢(3) =", and ¥(4) =(5) = ¢ and
on the edges ¥(1—1)=a—a, p(1—>2)=v(1—>3)=a—b,
P»(242)=9(343)=bb, and Y(2—4)=¢(3—=5)=b—c.
Thus, the fibers partition the graph G as I1={Il,,II,,II.},
where I, = {1}, I, = {2, 3}, and II. = {4, 5}.

We represent the dynamics by two functions k(z) and g(z)
modeling degradation and synthesis of gene product, respectively
(9, 10). For example, k(z) can be modeled as a linear degrada-
tion term and g;(z) as a Hill function (i = A, R, activation or
repression) (9). We consider that multiple inputs are combined
by multiplying functions g(z), but any other way of combining
inputs can be used. Then, the dynamics of the expression levels
of the genes in the circuit are described by ref. 14:

%%:-*ﬁh)+gA@0

G =—k(22) + ga(m) * gr(22)

L3 — —k(a3) + ga(:) * gr(z3) (2]
AR

dt 5 gA(md)'

The dynamics of the base are described by the state vector of the
base: (ya(t), ys(t), y.(t)) with dynamical equations (16):

Do = —(ya) + ga(ya)
W = —k(ys) + 9a(ya) * gr (W) [3]
We — —k(ye) + ga(ys).

If (ya(t), ys(t), yc(¢)) is a solution for the base Eq. 3, then the
map Py, sends the phase space of this base to the phase space of
the solutions in the graph G (16):

(z1(2), 22(1), 23(1), 22 (), 25 (1))

=Py [ya(t), o (1), Y ()= (ya(£), Yo (1), o (2), ye(2), yc(t)[)“-]

Therefore, the graph G sustains a polysynchronous subspace (see
for instance motivating example 1.4 in ref. 15):

A= {(Il, T2, X3, T4, :E5) GRS | xl(t),xg(t) :I3(t),I4(t)
— (1)}, [5]

This result can be corroborated by simply plugging
(Ztl(t)7xz(t),l‘3(t):Iz(t),l‘4(t)73?5(t):l‘4(t)) into Eq. 2
to obtain a solution of the dynamics, implying the synchrony
Ig(t) :1'3(t) in fiber Hl, and .’134(t) :I5(t) in fiber HC. We
note that the concept of sheaves and stacks might be useful
to generalize the symmetry fibration framework to multiplex
networks.
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We test this gene synchronization with publicly available tran-
scription profile experiments available from the literature. We
use gene expression data profiles in E. coli compiled at Ecomics:
http://prokaryomics.com (30). This portal collects microarray
and RNA-seq experiments from different sources such as the
NCBI Gene Expression Omnibus (GEO) public database (31)
and ArrayExpress (32) under different experimental growth con-
ditions. The data are also compiled at the Colombos web portal
(33). The database contains transcriptome experiments measur-
ing the expression level of 4,096 genes in E. coli strains over 3,579
experimental conditions which are described as strain, medium,
stress, and perturbation. Raw data are preprocessed to obtain
expression levels by using noise reduction and bias correction to
normalize data across different platforms (30).

E. coli can adapt its growth to the different conditions that it
finds in the medium. This adaptation is made by sensing extra
and intracellular molecules and using them as effectors to acti-
vate or repress transcription factors. This implies that the differ-
ent fibers are activated by specific experimental conditions. The
Ecomics portal allows one to obtain those experimental condi-
tions where a set of genes has been significantly expressed under
a particular set of conditions. We perform standard gene expres-
sion analysis (http://colombos.net and ref. 33) of the expression
levels in E. coli obtained under these conditions.

For a given set of genes in a fiber, we find the experimental
conditions for which the genes have been significantly expressed
by comparing the expression samples over the 1,576 different
WT growth conditions. Following ref. 33, the experimental con-
ditions are ranked with the inverse coefficient of variation (ICV)
defined as ICVy, = |ux|/o%, where py is the average expression
level of the genes in the condition & and o, is the SD. Follow-
ing ref. 33, we select those conditions with ICV, > ( ICVy), i.e.,
where the average expression levels in the particular condition
k are significantly higher than the SD. This score reflects the
fact that, in a relevant condition, the genes show an increment
of their expression above the individual variations caused by ran-
dom noise. Details on the expression analysis can be found in ref.
33 and https://doi.org/10.1371/journal.pone.0020938.s001. Thus,
we obtain expression levels organized by the relevant experimen-
tal conditions which are labeled according to the GEO database
(31). From these data, we calculate the coexpression matrix using
the Pearson correlation coefficient between the expression lev-
els of two genes i and j in the relevant conditions for genes in
a fiber. For off-diagonal correlations between genes in different
fibers, we use the combined sets of conditions of both genes.

Results for the correlation matrix are shown in Fig. 2 A4,
Bottom for fibers regulated by the crp-fis strongly connected com-
ponent. Gene expression is obtained for every gene, so we plot
the correlation matrix calculated over each pair of genes. Genes
that belong to the same operon are transcribed as a single unit
by the same mRNA molecule, so these genes are expected to
trivially synchronize (variations exist due to attenuators inside
the operon). Thus, we group together these genes as operons
in Fig. 24 to indicate this trivial synchronization. To test the
existence of fiber synchronization we compare gene coexpres-
sion belonging to different operons. Fig. 2 A, Bottom shows
that expression levels of the genes that belong to a fiber are
highly correlated as predicted by the symmetry fibration. Genes
that belong to different fibers show no significant correlations
among them. In particular, there is no significant correlation
between the expression of genes in a given fiber and the two
master regulators crp and fis. This result is consistent with the
fibration symmetry and occurs despite the fact that both crp
and fis directly regulate all genes in the studied fibers. We find
some off-diagonal weak correlations between fibers (e.g., mall),
probably indicating missing links or missing regulatory processes
that produce extra synchronizations. Some genes present weak
correlations inside fibers (e.g., cir4), indicating weak symmetry
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breaking probably from asymmetries in the strength of binding
rate of transcription factors or input functions, effects that are
not considered in the topological view of the input trees and can
lead to desynchronization inside the fiber.

Discussion

Fibration symmetries make sure that genes are turned on and
off at the right amount to ensure the synchronization of expres-
sion levels in the fiber needed to execute cellular functions. In
the fibration framework, network function can be pictured as
an orchestra in which each instrument is a gene in the net-
work. When the instruments play coherently, with structured
temporal patterns, the network is functional. Here we have con-
centrated on the simplest temporal organization, one in which
some units (instruments) act synchronously in time, a ubiquitous
pattern observed in all biological networks. Our findings iden-
tify the symmetries that predict this synchronization and give rise
to functionally related genes from the fibrations of the genetic
network.

Unlike network motifs which are identified by statistical over-
representation (2), fibers in biology arise from principles of
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III. TRANSCRIPTIONAL REGULATORY NETWORK OF E. COLI

To define the transcriptional regulatory network (TRN) we use the transcription factor-
gene target bi-partite network of Escherichia coli K-12 obtained from the RegulonDB data
source (http://regulondb.ccg.unam.mx). RegulonDB manually curates all transcriptional
regulations from literature searches [11]. We download all transcriptional regulatory inter-
actions catalogued in RegulonDB version 9.0 from http://regulondb.ccg.unam.mx/menu/
download/datasets/files/network_tf_gene.txt, last accessed September 15, 2018.

The database downloaded from RegulonDB is composed of a bipartite transcription factor
- gene target network. In this bi-partite dataset, a directed link between a source transcrip-
tion factor (TF) and a target gene means that the TF binds to the DNA sequence at the
binding site of the target gene to regulate its rate of transcription. In E. coli, each gene
expresses a single TF (this is not the case in eukaryotic genes that contains introns and
splicing of protein-coding RNA can produce many proteins from a single gene). Therefore, a
gene-gene regulatory network can be constructed from the bipartite transcription factor-gene
target network by associating each TF to the gene that expresses the TF. Then, a directed
link in the TRN from gene ¢ — gene j implies that gene ¢ encodes for a TF that controls
the rate of transcription of gene j. Thus, a directed link encodes the combined processes of
transcription, translation and TF binding to a target gene. We denote genes in bacteria in
italics, e.g., gadX and its protein as GadX. Thus, we say that gene ¢ sends a genetic 'message’
to gene j and the 'messenger’ is the TF. The history of all messages passing in the network
defines the information flow in the network. A TF can either be an activator, repressor or
can have a dual function. For the purpose of calculating isomorphisms between input trees,
the dual interactions are treated as distinct interactions. Thus, these three interactions are
treated as three different types.

For the purpose of building the TRN it is important to distinguish the gene’s products
between genes encoding for TF's and the rest of the genes encoding for the rest of the proteins
(enzymes, kinases, transport proteins, etc). A TF is a regulatory protein that regulates a
gene by binding, and therefore will always have an out-going link in the network. There
are other regulatory proteins (like kinases, histones, coactivators, etc) that regulate gene
expression but they do not have a DNA-binding domain and they regulate gene expression

without binding. In our TRN, genes that encode for a protein that is not a TF do not have

31



out-going links in the network. They only have in-going links and therefore are dangling
ends in the network. In E. coli most of these proteins are enzymes that catalyze biochemical
reactions in the metabolic network. Other proteins are involved in transport and signaling
processes (kinase) in the cell.

TF are also activated by effector molecules (metabolites) that bind non-covalently to an
allosteric site of the TF to alter the conformation of the TF to activate it or deactivated by
controlling the binding/unbinding of the TF to DNA. Effectors can also produce covalent
activation of the TF like for instance during phosphorylation mediated by kinases in the two
component TF's.

We treat these effector activities as external parameters, determined by the growth con-
ditions in the surrounding system (the cell in its changing environment) or by the metabolic
network, which is considered external to the TRN. These external perturbations are consid-
ered as the external growth conditions when we analyze the co-expression profiles in Section
IT. In the present study, the metabolic network is considered external to the TRN, so we do
not consider feedback loops from the TRN to the metabolic network and back to the TRN
mediated by effector metabolites. This extended network is treated in a follow up.

In E. coli, genes are also grouped by operons. An operon is a set of contiguous genes
that are transcribed as a single unit from the same mRNA molecule and the same promoter
site upstream of all genes and a terminator downstream [11]. An operon can contain genes
encoding for TF or non-TF proteins, and more than two TFs can be part of the operon.
Since the operons are transcribed by the same RNA molecule, then we group these genes
into a single node in the network. This is certainly the case when the operon has a single
promoter transcribing the full operon. However, there is some ambiguity in the construction
of the network using the definition of operon in RegulonDB when there are promoters in
the middle of the operon and these promoters transcribe more than one TF in the operon,
forming different transcription units. For instance, the operon in the gad system, gadAXW
which is important in the pH strongly connected component in Fig. 2b. This operon
expressed two TFs, GadX and GadW, and one enzyme GadA. Here, each gene has its own
promoter and terminator and thus are different nodes in the network. Moreover, each TF
is regulated by different TFs as well as each TF regulates different genes. As seen in Fig.
2b, for instance, GadX binds to hns but not GadW. Also, GadW is regulated by ydeO but
ydeO does not regulate gadX. Thus, putting together these two genes in the same operon
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gadAXW would miss all these links. Thus, when two TF with different promoters are part
of the operon, we consider the TF as different genes. On the other hand, the non-TF
genes in operons are always put together with other genes in the operon. For instance, the
gadAXW operon from RegulonDB is considered as two nodes: gadW and gadAX. To simplify
notation, when there is an operon that contains one TF and several non-TF proteins, then
for simplicity, we call this operon by the name of the TF. For instance, gadAX is simply
called gadX or the operon rbsDACBKR is called rbsR and therefore the TF rsbR represents
the entire operon rbsDACBKR. Finally, when all the genes in the operon are non-TF, then
we call the operon with all the genes names, as for instance, lsrACDBFG-tam.

In the RegulonDB database there are a total of 4690 genes. Out of these genes, Regulon
DB provides a bipartite network consisting of 1843 genes with interactions from or to other
genes, the remaining genes are not considered in the analysis. There are 192 genes that
encode for TFs. We cluster the genes into 313 operons as explained above. Full names of
operons and genes appear in SI Table VI. After grouping the genes into operons, the network
is reduced to 879 nodes. There are 1835 directed edges with an average in-degree (or out-
degree) of 2.1. In this network we find 91 different fibers that encompass 416 different nodes.
We find that 28 nodes are involved in 7 strongly connected components of size larger than

one node, and the rest are single node connected components.

IV. SYMMETRY FIBRATIONS

Below we provide formal definitions of the main concepts using in the paper: (a) input
trees and isomorphisms, (b) from fibrations — surjective minimal graph fibrations called
here symmetry fibrations, (c) fibers and minimal bases, and (d) minimal balance coloring
algorithm. We start with a review of the literature (not exhaustive).

The literature on fibrations and groupoids crosses the fields of mathematics, computer
science and dynamical systems theory. The notion of fibration was first introduced by
Grothendieck as fibrations between categories in algebraic geometry [12]. The original pa-
per of Grothendieck has been published as a part of the Séminaire N. Bourbaki in 1958
and can be found at http://www.numdam.org/article/SB_1958-1960__5__299_0.pdf.
A mathematical account of Grothendieck fibrations in the context of category theory ap-

pears in https://ncatlab.org/nlab/show/Grothendieck+fibration. For a review of
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FIG. 5: Group symmetries and fibrations with their input tree. a, Example of a network
with a symmetry group. The automorphism shown maps the network into another network leaving
invariant the connectivity of every nodes in the network [4, 14, 17, 18]. b, A network without
automorphisms but with a fibration. The addition of a single out-link from 3 — 7 breaks the whole
group symmetry. However, since fibrations are defined according only to the input tree, then the
network still have a symmetry, a fibration arising from the fact that the input trees of nodes 2 and
3 are isomorphic, as well as between the input trees of nodes 4 and 5 as shown in (c). There are
no more isomorphisms as shown by the rest of the input trees. Therefore, nodes 2 and 3 form a
fiber. Nodes 4 and 5 also form another fiber, yet independently of the other fiber. The fibration is
a morphism that maps the network into a base which is formed by collapsing the isomorphic nodes
into one, i.e., collapsing node 2 and 3 together, and node 4 and 5 together. The resulting base is

also called a quotient graph.

the history of fibrations from Grothendieck to modern studies, see the blog of Vigna at
http://vigna.di.unimi.it/fibrations/. The formulation of Grothendieck is highly ab-
stract and differs from our present work which refers to the notion of surjective mini-

mal graph fibration which is a fibration between graphs. The work of Boldi & Vigna
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[13] and DeVille & Lerman [15] on graph fibrations are the closest to our formulation,
see http://vigna.di.unimi.it/ftp/papers/Fibrations0fGraphs.pdf. Graph fibra-
tions have been applied in computer science to understand PageRank [35], and the state
of synchrony of processors in computing distributed systems [36, 37], where fibrations are
the key concept in the computation of identical states in distributed system. The relation
between surjective minimal graph fibrations and synchronous subspaces is elaborated in
DeVille & Lerman [15] and Nijholt, Rink & Sanders [16]. It should be noted that all these
works on fibrations pertain to a highly abstract mathematical level which, in turn, provides
the concept of fibration with a quite broad applicability. For a more accessible reading
on fibrations within the particular context application to biological networks, the reader is
recommended to follow our paper and supplementary sections.

In parallel, the work of Golubitsky and Stewart [14, 20] and others in dynamical sys-
tems theory consider the equivalent formalism of symmetry groupoids, equitable partition
of balanced colored nodes and its relation with synchronization [21-23]. A review of the
groupoid formalism and its application to synchronization in dynamical systems appears
in [14]. DeVille and Lerman [15] also discuss the relation between graph fibrations and the
groupoid formalism.

Synchronization arises also as a consequence of permutation symmetries in the network,
called automorphisms [4], which form symmetry groups and are different from symmetry
fibrations and symmetry groupoids. There is a large literature in the dynamical system
community dealing with cluster synchronization from automorphisms, since synchronization
is an ubiquitous phenomenon across all sciences [21-23]. Reviews can be found in the work of
Golubitsky and Stewart [14, 20| to recent work in [17-19] and references therein. Symmetry
groups are the cornerstone of physical phenomena appearing in all physical systems [5].

Below, to elaborate on the definition of symmetry fibrations, we first compare fibrations
to automorphisms which form symmetry groups [4, 14, 17-19] using the example networks of
Figs. ba and 5b. An automorphism is a transformation that preserves the full connectivity of
the network. That is, an automorphism preserves not only the inputs but also the outputs
of each node in the network, and therefore, it presents more stringent conditions on the

connectivity than symmetry fibrations which preserve only the input trees. For example,

35



the network of Fig. ba is invariant under the automorphism defined by the permutation:

123456

N AR (6)
132546

because the nodes are connected exactly to the same nodes before and after the application
of the permutation o, which is a global mirror symmetry.

Next, consider the slightly modified network depicted in Fig. 5b left, which differs from
the network in Fig. ba by one extra out-going link from node 3 to 7. In this network, the
permutation of nodes 2 «+ 3 and 4 +» 5, Eq. (6), is not an automorphism anymore, because
it does not preserve the in and out connectivities of all nodes, e.g., node 3 is connected with
7 but loses this connection after the permutation (Fig. 5b right). It is interesting to see how
fragile group symmetries are: if we connect just one extra node to the network as shown
in Fig. 5b, the symmetry (i.e. the network automorphism group) is broken. This occurs
because automorphisms require very strict arrangements of nodes and links to preserve,
rigidly, the global structure of the network. Fibration symmetries, with their emphasis in
the preservation of the input trees only, is less restrictive. This might explain why fibration
symmetries emerged in living systems as opposed to the more restrictive automorphisms
which describe all aspects of matter, from elementary particles to atoms, molecules and
phases of matter.

This example raises the following question: are there extra symmetries in the network
shown in Fig. 5b beyond its automorphisms? The answer to this question is, indeed, yes:
there are extra symmetries in the network of Fig. 5b, the fibration symmetries [12, 13],
which do not form a group [4] but groupoids [14]. A groupoid is a set of transformations
satisfying the axioms of invertibility, identity and associativity but not the composition law
(closure) [14], while in a group, transformations satisfy the four axioms. For this reason,
groupoids are fundamentally different algebraic structures compared with traditional group

symmetries.

A. Input tree

Roughly speaking, symmetry fibrations take into account only the input trees of the

nodes, but not the output-trees (this is not true though when the input and output trees
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are connected). Thus, node 3 in Fig. 5b is connected to node 7 via an out-going link, and
this link destroys the symmetry group, but node 3 is still symmetric with 2 via a symmetry
fibration, since the input trees of nodes 2 and 3 are isomorphic, even though node 3 is
connected with 7. This is because the connection 3 — 7 is an out-going link of node 3 and,
therefore, is not part of its input tree. Simply put, symmetry fibrations preserve input trees
only, while automorphisms preserve both input and output-trees, since they preserve the
full connectivity of the network, and thus, they represent more stringent symmetries than

fibrations. We formalize this idea next after introducing some definitions.

The basic ingredient to define a new symmetry beyond automorphisms is the input tree,
which contains the full information received by a given node through the totality of all the
possible paths ending in that node and starting from every other node in the network. Thus,
for every node i in the network G there is a corresponding input tree, called T}, which is
defined as a tree with a selected node r;, called the root, and such that every other node is
a path P;_,; of G starting from j and ending in ¢ [16]. A link from node P;_,; to node Py_,;
exists if P;; = €1 Pr—i =, where e;_,; is an edge of G.

The concept of input tree has appeared in the literature as the universal total space in
traditional categorical or topological terminology [12], the universal total graph from [13], the
view in the theory of distributed systems, or the unfolding of a nondeterministic automaton
in concurrency theory [13].

For example, let us construct the input tree 75 of node 2 in the network on the left of
Fig. 5b. The root is the node ry at the uppermost level of the tree. Every other node of the
input tree of node 2 is a path P;_,» ending in 2. There are two paths of length 1: 73351_),2 and
7751_12; three paths of length 2: 732(22, 775(2_12, and PG(2_)>2; and so on. Since 772(2_12 = 62_>3/P§1_)>2,
we put a link in the input tree from 772(22 to 773532 because 772(2_12 = egﬁgpél_))z. We then
add all other links in the input tree using the same criterion. The resulting input tree 75 is
shown in Fig. 5c, together with the input trees of all other nodes in the network in Fig. 5b.

To simplify, we label each node of T; using the starting point of the corresponding path
P;_i. For example, in T5 nodes 733(1_)>2 and 735_12 are labeled 3 and 4 respectively, and the
length of the path is equal to the depth of the node in the input tree.

Thus, in practice, we arrive at the following way to construct the input tree: we start

with the node at the root, lets say node 2. We label every node P;_,» in the input tree by
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node j where the path starts. The first layer of the input tree consists of all the nodes that
are at a distance one from the root. In this case, nodes 3 and 4. Thus we add two links to
2 from 3 and 4 in the input tree.

The second layer of the input tree is obtained applying the same procedure to each node
in the first layer, 3 and 4. For instance, node 3 receives a link from 2 and 5. Therefore
the second layer of the input tree contains nodes 2 and 5 connected to node 3. We repeat
the procedure with the other node in layer 2: node 4. Node 4 receives a link only from
node 6, and node 6 from no one. So, we add a link from 6 to 4 and this path does not
propagate further. The third layer of the input tree is obtained iteratively applying the
same procedure, and so on.

We note that the input trees of nodes 1, 2, 3 and 7 are infinite since the network contains
a cycle (or loop) between nodes 2 = 3. For instance, 77 is infinite because there are paths
crossing the loop infinite times. On the other hand, the input trees of nodes 4, 5 and 6 are

finite since they do not cross the loop.

B. Isomorphic input trees

The input tree T; at node 7 can be interpreted as the collection of all possible ‘histories’
starting at some node and ending in node i. As shown in Section 1 C, if two input trees
T; and Tj are isomorphic, then the corresponding nodes ¢ and j in network G have the
same dynamical state [15, 16]. This equivalence is understood in terms of a local in-
isomorphism that maps nodes to nodes and links to links, so it formalizes the fact that the
dynamical interactions represented by a directed link from gene to gene could be in principle
different across genes, as long as the links are the same (or similar, in case that the produced
synchronization is approximate) inside the fiber.

An isomorphism between 7; and 7Tj is defined as a bijective map 7 : T; — T}, which maps
one-to-one the nodes and edges of 7; to nodes and edges of 7}.

A minimal condition for the existence of an isomorphism between the input trees is that
the two input trees have the same number of nodes (we could also add a condition of the
same degree sequence). Thus, it is clear that there could be no isomorphism between the
input trees of nodes 2 and 4, since the former contains an infinite number of nodes and the

later just two. Thus, a minimal condition for an isomorphism to exist is that it should be a
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mapping between two input trees with the same number of nodes, since the mapping needs to
be bijective, i.e., with an inverse. By inspection it is then clear that there is an isomorphism
between the input trees of nodes 4 and 5. This isomorphism is the map 74,5 : Ty — 75, and

it is written as a transformation following the notation:

4:6

s =11 ||, (isomorphism between input trees of nodes 4 and 5). (7)

which maps the root of T to the root of T5 as 74_,5(4) = 5, and node 6 € T to node 6 € T5
as T45(6) = 6. The notation starts with the root of the tree and then we write nodes in
each level from top to bottom starting from left to right in each level. In this particular
example the links are of the same type, so there is no need to specify the mapping between
links in the isomorphism, but in general the local equivalence require that nodes are map to
nodes and also links are mapped to the same type of link by the isomorphism.

The map in Eq. (7) is one of the simplest isomorphism since the input tree contains only
one level. In this particular case, to see that nodes T, and T5 are isomorphic, it is thus
enough to see that both nodes 4 and 5 connect to one and the same node, which is node
6 in this case. That is, both input trees of nodes 4 and 5 are isomorphic because they are
made up of just two nodes and one edge, and this isomorphism implies that 4 and 5 receive
the same information. This is the simplest form of an isomorphism between input trees. In
this case, we say that node 4 and 5 have the same input-set, which is an input tree of only
one level, that is the set of incoming links. The input-set is used in the groupoid formalism
in Ref. [14].

Next, we consider the input trees of nodes 2 and 3. By visual inspection, both input
trees have the same ‘shape’. However, these trees are infinite in the number of levels. How
do we decide if two input trees are isomorphic when they have an infinite number of levels?
Remarkably, to determine if two input trees are isomorphic, it suffices to check that they
are isomorphic up to the N — 1 level, thanks to a theorem by Norris [26], where N is the
total number of nodes in the network (. This is an important result that allows us to avoid
to check an infinite number of equivalences. Since G has |Ng| = 7, we use six levels in the

input trees to determine that there is an isomorphism between 75 and 73 which corresponds
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to the following map:

2:34256346 ...
mos= 11 11144111 J |, (isomorphism between input trees of 2 and 3).

3:25346256 ...
(8)
There are no other isomorphism between the other input trees. Notice that 77 is not iso-
morphic to T3 and T3 by just one link to the root.
The existence of an isomorphism 7 from the input tree of node i to the input tree of node
j implies the synchronization of z; and z; [15]. In the groupoid formalism of Golubitsky
and Stewart, it is said that two nodes are synchronized if their input-set are synchronized,
too [14]. Analogous work in dynamical systems shows that automorphisms in networks lead
to synchronized nodes in orbits, see [17-20] and references therein. The orbit of a given
node is obtained by applying all automorphisms of a network to the node and the nodes
in the orbit are synchronous. The synchronized orbits obtained from automorphisms are
analogous to the synchronized fibers obtained from symmetry fibrations. In general, every
orbit is also a fiber, but the opposite is not true, since a fiber is not necessarily an orbit.
In our analysis of the E. coli network, we find some automorphisms. Some of the star
fibers with n = 0 are also orbits of the networks since they are invariant under permutation
symmetries of the symmetric group of order n, S,,. But this is only when the genes in
the star have no out-going links. As shown in the example of Fig. 5, an out-going link in
any of the star genes, will destroy the automorphism, but not the fiber. For this reason,
automorphisms are somehow more prevalent in undirected networks. For instance, we have
found that automorphisms describe the symmetries of the gap junction connectome of C.
elegans, which is composed all of undirected links [34]. In the case of directed biological
networks treated here, while automorphisms could be of use to discover some synchronized
nodes, the majority of synchronization is due to symmetry fibrations, which are not described

by automorphisms.
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C. From fibrations to symmetry fibrations via isomorphic input trees and minimal

bases

A fibration is any morphism from a network G = (Ng, E¢) to a base G = (Ng, Eg):
¥ : G — B [12]. If a network G = (Ng, E¢) has at least one pair of isomorphic input trees,
then there exists a network B = (Np, Ep), called the base of GG, such that G can be ‘fibered’

over B by the graph fibration. The base B is defined as follows:

e anode I € Np is a representative of the set of nodes {i € Ng} whose input trees are

isomorphic;
e an edge ey .y where I,J € Ep is defined as ey ,; = Zie[ ei—j, where e;_,; € Egq.

Having defined the base network B, we say that G is fibered over B if there exists a surjective
morphism ¢ : G — B, called surjective graph fibration [13], that maps nodes and edges of
G to nodes and edges of B as: ¢(i) = [ for all i € Ng, and ¢(e;—;) = e;—y. A surjective
morphism is a map between two sets (the domain and codomain) where each element of the
codomain (in this case B) is mapped to, at least, by one element of the domain (in this case
G). The set of nodes i € Ng that are mapped to the same node I € Ng, and denoted by
Y~1(I), is called the fiber of G over node I. We notice that all input trees of nodes which
belong to the same fiber are pairwise isomorphic.

In general a surjective graph fibration ¢) can map nodes with isomorphic input trees to
different bases, thus, the number of fibers is not minimal.

A surjective graph fibration that maps all genes with isomorphic input trees to a single
common node in B is called a surjective minimal graph fibration in the sense of [13]. Such a
minimal fibration will generate then the minimal bases of the network and will produce the
largest collapse of nodes in fibers. In this work we only deal with surjective minimal graph
fibrations and we call them symmetry fibrations for short.

In practice, a symmetry fibration maps G to the minimal base B (analogous to the
quotient), that consists of the following steps: (i) consider all the nodes in a fiber (which
have isomorphic input trees) and choose one as the representative I, (ii) collapse the nodes
in the fiber into one single node in B and call it by the name of the representative node I,
(#1i) for every link of a node j in G directed to the node I in G, add a link in B from j to
I. If the node j belongs to the fiber, then the corresponding link in B is an autoregulation
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loop in B, (iv) repeat for every fiber in G. When fibers belong to disjoint components of

the network, then they are considered as distinct fibers.

V. ALGORITHM TO FIND FIBERS WITH MINIMAL BALANCE COLORING

The algorithm to partition the network into fibers is based on the 'minimal balanced
coloring’ algorithm developed by Cardon & Crochemore in Ref. [24]. Here we follow a version
developed by Kamei & Cock [25] to construct a minimal balanced coloring of a network,
namely a coloring that employs the least possible number of colors, which is associated
with minimal graph fibrations. The algorithm’s runtime scales as O(|E¢g|log, [ Ng|), which
implies that it is essentially linear with the network size, specially for sparse networks, and
can be applied to very large networks.

The theory of balance coloring is explained in Ref. [14]. A balance coloring creates a
partition of nodes of GG into disjoint sets (corresponding to synchronous fibers) such that each
node in one set receives the same number of colors from nodes within other sets [14, 20]. A
coloring of GG with this property is the balanced coloring and represents an equitable partition
of the network, see [14, 20]. The sets identified by a minimal balanced coloring partitions
the network with minimal colors and corresponds to the fibers of G identified by minimal
graph fibrations ¢ [13-15].

Thus, we color nodes such that synchronous nodes in a fiber receive the same colors from
their synchronous nodes. As example, the genes baeR and spy (Fig. 1a) have the same color
and are in the same fiber since they receive the same colors from their neighbors: both baeR
and spy receive one red color via the activator link from one red node (baeR from itself and
spy from baeR) and one green activator link each from the green node cpzR.

The algorithm constructs a coloring of the nodes that is balanced. A coloring is balanced
if two identically colored nodes are connected to identically colored nodes via their inbound
links. Each balanced colored cluster is a fiber in the network. The fibers also corresponds to
the orbits in a network when the symmetries are automorphisms rather than isomorphisms
in the input trees. The flow of the algorithm is exemplified with the example network of

Fig. 6.

e Step 1 - We start by assigning the same color to all nodes. In Fig. 6a all nodes are

initially colored in blue. In addition, we assign to each link the same color of the
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FIG. 6: Algorithm to find the fibers of a network through a minimal balanced coloring.
The goal of the algorithm is to find a minimal balanced coloring of the network, so that two nodes
have the same color only if they are connected to the same number of identically colored nodes via

inbound links. The colors represent the fibers in the network.

node from where it emanates. To update the coloring (or, equivalently, to generate a
new partition) of nodes, we construct the table shown in the right panel of Fig. 6a, as
explained next. In the top row of this table we put the network nodes colored with
their current color. In the leftmost column we put each type of colored link. In this
initial stage of the algorithm we only have a blue link for all the nodes. Then, we
fill the entries of the table with the number of colored links of this blue type that are
received by the corresponding node. For example, node 1 receives two 2 blue links as
well as nodes 2 and 3. Nodes 4, 5 and 7 receive one blue link each, and node 6 nothing.

The structure of this table determines the new coloring as explained in the next step.
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e Step 2 - Using the table in Fig. 6a we update the coloring of nodes as follows. We
assign the same color to all nodes that receive the same number of colored links of each
type. Specifically, nodes 1, 2 and 3 receive two blue links, so we assign them the same
(blue) color. Analogously, nodes 4, 5 and 7 receive one blue link, so we assign them
the same color, but different from blue. We assign them a purple color. Similarly, we
assign another color to node 6 (green). We then obtain the colored network in the
left of Fig. 6b. Applying the counting of receiving coloring links to this network, we
obtain the new coloring table shown in Fig. 6b, where each link has the color of the
node from where it emanates. Thus, we update the table to generate the new coloring,

as shown in the right panel of Fig. 6b.

e Step 3 - Using the same criterion as in Step 2, we update the coloring of nodes,
comprising now five different colors, and then we generate the new table, as shown
in Fig. 6¢. At this point the algorithm stops, because we do not need to introduce
more colors, since each color is balanced. Each color corresponds to a fiber, and each
node in each colored fiber receives the same colors from other fibers or from nodes in
the same fiber. Therefore, the coloring shown in the network of Fig. 6¢ is the minimal

balanced coloring of the network, and the colors indicate the fibers in the network.

As far as only minimal fibrations are considered, the algorithm will return always the same
fibers containing the same nodes, for any initial condition and realization. Below we provide
the pseudo-code to clarify the algorithm. More detailed instructions and methodology for
obtaining fiber building blocks will be given in a follow-up paper. We start by assigning all
nodes to the same fiber and then continue to refine the partition basing on the input set of

the node until no further refinement can be obtained.
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Algorithm 1 Finding fibers following Kamei & Cock Ref. [25]

Input: Graph G = {Ng, Eg}, where Ng are vertices and F¢g are edges of the analyzed
network
| Ng | - number of vertices, Ng = {v1...vng|}
Output: C = {¢;}, where ¢; - color of node  and i =1--- | V|

Notation: I; = {I}... I}, where N = current number of colors

1: Ng=1

2: fori=1---| Ng | do

3: c =1

4: end for

5: 7=0

6: repeat

7: fori=1---|Ng|, k=1..N; do

8: Ii]C = number of nodes of color k in the input set of v;

9: end for
10: H = set of all unique {I;}
11: // assign each unique vector a color and color the graph accordingly
12: fori=1---| Ng | do
13: ¢; = index of I; in H, e.g. if two nodes have the same I; and I; — ¢; = ¢;
14: end for
15: j=7+1
16: N;=|H |
17: until N; # N,

18: return {¢;}
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VI. STRONGLY CONNECTED COMPONENT

In a directed network, the strongly connected component is composed of nodes that are
reachable from every other node in the component. That is, there is a directed path from
every node to any other node in the strongly connected component. A weakly connected
component is obtained when we ignore the directionality of the links. Strongly connected
components are relevant to genetic fibers since they contain loops that control the state of
the genes. We find four types of strongly connected components. Single-gene components
composed of autoregulator loops like cpzR and fadR in Figs. la and le. The other type
of components are those in Fig. 2a and Fig. 2b and also a five-gene connected component
shown in SI Fig. 7. We note that most of the fibers regulated by these components do
not belong to the connected component. This is because they receive information but do
not send information back to the connected component. These fibers are characterized by
integer fiber numbers. When the fiber receives and sends back information, that is, when
the fiber belongs to the strongly connected component, then it becomes a Fibonacci fiber.
The largest strongly connected component in the E. colt network controls the pH system

shown in Fig. 2b.

VII. STATISTICS OF FIBERS IN THE TRN OF E. COLI

A. Fibers statistics in E. coli

SI Table I shows the counts in the FE. coli network of each building block. For instance

the most abundant building blocks are the following:

In=0,0=1): 45
n=1,0=0): 13
In=0,0=2): 13
In=1,0=1): 8

The list is completed with the fractal building blocks of Fibonacci sequences which are

less numerous but more complex in their structure:

s = 1.6180..,0 = 2): 1
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FIG. 7: A five-gene connected component of soxR, soxS, fnr, fur,

fibers.

soxR-soxR-fnr-fur-arcA connected component

—————> — positive CRL X )

— 1 — negati

TlEgﬂ 10e mar A
- ¢ —dual

fadR lexA

s O
Z>é%.

A = fadE, fadl] ., v ‘.L
B = uvrA, ssb

C = betl, betT ®

D = fpr, pqiABC, rirA-waaQGPSBOJYZU

E = nfsB, nfo, inaA, acrZ . I

F = fldB, pgi, ribA, ydbK-ompN ‘

G = purR, pyrC

H = cvpA-purF-ubiX, glrR-ginB, hflD-purB, lolB-ispE-prs, purC,

PUrtK, purL, speAB

| = crl_1, exbBD, fepDGC, fhuACDB, fhuE, gpmA, met,

nohA-ydfN-tfaQ, ryhB, ygaC, yhhy, yjjZ K

K = folE-yeiB, metA, metC, metF

L = bcsABZC, fnrS, pdeF, pepT, pitA, ravA-viaA, tar-tap-cheRBYZ,

upp-uraA, xdhABC, ydeJ, ytiCD-idIP-iraD

M = ompX, rpsP-rimM-trmD-rplS, ychO, ysgA

N = ackA-pta, dcuC

O = arcZ, ydeA

P = cho, dinB-yafNOP, dinD, dinG-ybiB, dinQ, ’(p : G —> B
ftsK, hokE, insK, polB, ptrA-recBD,

recAX, recN, recQ, rpsU-dnaG-rpoD, ruvAB, symE, tisB,
umuDC, uvrB, uvrD, uvrY, ybfE, ybgA-phr, ydjM, yebG
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g = 1.4655...0 = 1): 1
s = 1.3802...,0 = 1): 1

Structure type Amount in E-coli
In=0,l=1) 45
In=0,1=2) 13
|n=0,0l=3) 3
In=1,1=0) 13
In=1,1=1) 8
In=1,1=2) 3
|n=2,1=0) 1
In=2,1=1) 1

lpg = 1.3802..,1 = 1) 1

lpg = 1.4655..,1 = 1) 1

lpq = 1.6180..,1 = 2) 1
Composite Fiber 1

Total number of building blocks 91

TABLE I: Building block statistics. We show the count of every building block defined by the fiber

numbers.

B. Full list of fibers in E. coli

SI Table VI shows the complete list of the 91 fibers building blocks found in the genetic
network of E. coli. We list the genes in the fiber plus their external regulators. If a gene
or operon is not in this list, for instance lacZYA, it means that the gene or operon is not
in a fiber. Supplementary File 1 shows the plot of the circuit of every fiber and the fiber
building block.

The first column in SI Table VI is the ID of the fiber. This ID refers to the plot of the
fiber building block in Supplementary File 1. The second column lists the genes in the fiber,

the third column lists the external regulators. The last column specifies the fiber number
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associated with each fiber as |n, £) or |@q, £).

VIII. DATASETS OF BIOLOGICAL AND NON-BIOLOGICAL NETWORKS

To investigate the applicability of fibrations in a broader context, we performed an ex-
tensive analysis of different complex networks from diverse domains in systems science.

Full details of each network analyzed can be accessed at https://docs.google.com/
spreadsheets/d/1-RG5vR_EGNPqQcnJU8q3ky10pWi30jTh5Uo-Xa0Pj0Oc. The codes to re-
produce this analysis are at github.com/makselab and the full datasets appear at
kcorelab.org. See also tables below with information about the networks.

We first show the symmetry fibrations in biological networks and species. See Section

I H. We characterize biological networks spanning from:

e Biological networks: transcriptional regulatory networks, metabolic net-
works, cellular processes networks and pathways, disease networks, neural

networks.
We study the following species:

e Species: A. thaliana, E. coli, B. subtilis, S. enterica (salmonella), M. tuber-
culosis, D. melanogaster, S. cerevisiae (yeast), M. musculus (mouse), and

H. sapiens (human).
We then study non-biological networks in Section I H:

e Social Networks: online social networks, Facebook, Twitter, Wikipedia,
Youtube, email networks, communication networks, citation networks, col-

laboration networks, bloggers

e Internet: routers, autonomous systems, web graphs, hyperlinks, peer-to-

peer
e Infrastructure Networks: power grid, airport, roads, flights
e Economic Networks

e Software Networks: Linux, jdk

e Ecosystems
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Network Domain|Total No. of nodes|Total No. of edges|No. of networks
Biological 287390 4211856 289
Economic 1752 108639 5
Ecosystems 1879 5378 14
Infrastructure 24511 82534 16
Internet 244634 835565 27

Social 104909 1261009 15
Software 43391 503645 3

TABLE II: Features of the networks across domains. We report the total numbers for each domain

summed over all the networks in the domain.

Species Total No. of nodes|Total No. of edges|No. networks
Yeast 55932 1392926 11
Arabidopsis Thaliana 790 1431 1
Bacillus subtilis 5602 11417 3
Drosophila 39549 321734 5
Escherichia coli 879 1835 1
Human 72587 1198712 248
Micobacterium Tuberculosis 1624 3212 1
Mouse 64709 987424 7
Salmonella 8293 15589 6

20

TABLE III: Number of networks per species.




Arabidopsis | Bacillus | Caenorhabditis | Cat | Drosophila| Escherichia| Human | Micobacterium | Mouse | Rat | Salmonella| Yeast
Thaliana | subtilis elegans coli Tuberculosis

TF 1 2 2 0 4 1 4 1 4 0 2 11
Neuron 0 0 0 1 1 0 0 0 3 3 0 0
Metabolic 0 0 0 0 0 0 48 0 0 0 2 0
Disease 0 0 0 0 0 0 66 0 0 0 0 0
Kinase 0 0 0 0 0 0 2 0 0 0 0 0
Pathway 0 0 0 0 0 0 127 0 0 0 0 0
Protein 0 1 0 0 0 0 1 0 0 0 2 0

TABLE IV: Table with the count of networks per type of biological network and species. These

networks are used to calculate the distributions of fiber across species and biological types in Figs.

4a, b, and c¢. For each type of biological network in Fig. 4a, b, we calculate the count over the

total number of networks as indicates at the end of each row for each biological type. The same

occurs with the number of networks at the end of each column for each species. Figure 4c shows

the counts over all the network shown in the last row/column.
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Network Subdomain

Total No. of nodes

Total No. of edges

No. of networks

Autonomous systems graphs
Bitcoin

Collaboration networks

Disease

Facebook

Youtube subscriptions

Internet peer-to-peer networks
Jazz

Linux

Metabolic

Networks with ground-truth communities
Neural networks

Cellular processes and Pathways
Plant-Pollinator
Plant-Seed-Disperser

Power grid

Sentiment

Transcriptional regulatory

141842
9664
50260
4309
4039
13723
31978
198
30837
4273
1005
3694
9825
1631
65
4941
99
260258

481415
89777
504897
15254
88234
76765
110154
5484
213954
33829
25571
129812
54712
2719
165
6594
278
3908769

14
2
4

66

127
11

32

TABLE V: Subtypes of networks belonging to the different domains.
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Id |Fiber Regulators |Fiber Number
1 |aaeR, ampDE, azuC, comR, cyaA, narQ, sohB, speC,|crp In=0,l=1)
spf, trxA, yaeP-rof, yaeQ-arfB-nlpE, yjeF-tsaE-amiB-mutL-
miaA-hfq-hfi XKC
2 |aaeXAB, agp, cpdB, cstA, glgS, glpR, grpE, hofMNOP,|crp In=0,l=1)
ivbL-ilvBN-uhpABC, lacl, mcaS, mhpR, nadC, ompA,
ppdD-hofBC, preTA, raiA, rmf, rpsF-priB-rpsR-rpll, sfsA-
dksA-gluQ, sxy, ubiG, ychH, yeiP, yeiW, yfiP-patZ, yibN-
grxC-secB-gpsA, ykgR
3 |accA, accD, fabl, fadR, yceD-rpmF-plsX-fabHDG-acpP- In=1,1=0)
fabF
4 |accB, iclR fadR In=1,1=1)
5 |ackA-pta, dcuC arcA, fur  |jn=0,1 = 2)
6 |acrZ, inaA, nfo, nfsB marA, rob,||n=0,l=23)
SOXS
7 |add, dsbG, gor, grxA, hemH, oxyS, trxC crp, oxyR,||n = 0,l = 1)®|n =
rbsR 1L,l=1)
8 ladeD, adiY, chiA, gspAB, hchA, hdfR, mdtJI, rcsB, yjjP |hns lpg = 1.4655..,1 = 1)
9 |agaR, agaS-kbaY-agaBCDI In=1,1=0)
10|alaA-yfbR, avtA, leuE, livJ, ivKHMGPF, lysU, sdaA Irp In=0,l=1)
11]alaE, kbl-tdh, yojI Irp In=0,l=1)
12]alaWX, argU, argW, argX-hisR-leuT-proM, aspV, flxA,|fis In=0,1=1)
glyU, 1leuQPV, leuX, IptD-surA-pdxA-rsmA-apaGH, lysT-
valT-lysW, metT-leuW-glnUW-metU-glnVX, pheU, pheV,
proK, proL, queA, serT, serX, thrU-tyrU-glyT-thrT-tufB,
thrW, trmA, tyrTV-tpr, valUXY-lysV
13|aldB, hupB crp, fis In=0,l=2)
14|allA, allS, gel-hyi-glxR-ybbW-allB-ybbY-glxK allR In=0,l=1)
15/alsR, rpiB In=1,1=0)
16 |amiA-hemF, cmk-rpsA-ihfB, uspB IHF In=0,l=1)
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17

18
19
20
21
22
23
24
25
26

27

28

29

30

31

32

33

34

35
36

amn, mipA, phnCDE_1E_2FGHIJKLMNOP, phoA-psiF,
phoB, phoE, phoH, ydfH, yegH, yhjC, ytfK

ampC, dacC

araE-ygeA, araFGH

arcZ, ydeA

argA, argCBH, argE, argF, argl, argR, artJ, artPIQM, lysO
argQ, lysP

aroF-tyrA, tyrB

aroH, trpLEDCBA, trpR

asnB, clpPX-lon, glsA-ybaT, uspE

aspA-dcud, dcuR

bacA, cpxPQ, cpxR, ftnB, 1dtC, 1dtD, ppiD, sbmA-yaiW,
slt, srkA-dsbA, xerD-dsbC-recJ-prfB-lysS, yccA, yebE,
yidQ, yqaE-kbp, yqjA-mzrA

baeR, spy

besABZC, fnrS, pdeF, pepT, pitA, ravA-viaA, tar-tap-
cheRBYZ, upp-uraA, xdhABC, ydeJ, ytiCD-idIP-iraD
bdcA, dkgB, grxD, mepH, mhpT, pgpC-tadA, rfe-wzzE-
wecBC-riffGHC-wecE-wzxE-rff T-wzyE-rffM, rybB, tehAB,
tsgA, ydbD, yeaE

betl, betT

bioA, bioBFCD

bluF, ydel

borD, envY-ompT, mgrB, mgrR, mgtLA, mgtS, pagP, rstA,
ybjG

cbpAM, ¢gltX, gyrB, msrA

cdaR, garD, gudPXD

o4

bolA
araC, crp

arcA

argP, Irp

tyrR

gadX
crp, for,

narLL

cpxR

fnr

nsrR

arcA, cra

birA

rcdA

phoP

fis

In=1,1=0)
In=0,l=1)
In=0,l=2)
In=0,l=1)
In=1,1=0)
In=0,l=2)
In=0,l=1)
In=1,1=0)
In=0,l=1)
In=0,l=3)
In=1,1=0)
In=1,1=1)
In=0,l=1)
In=0,l=1)
In=1,1=2)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=1,1=0)




37

38
39
40
41

42
43

44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7
58
59
60

cho, dinB-yafNOP, dinD, ding-ybib, dinQ, ftsK, hokE, insK,
lexA, polB, ptrA-recBD, recAX, recN, recQ, rpsU-dnaG-
rpoD, ruvAB, symE, tisB, umuDC, uvrB, uvrD, uvrY, ybfE,
ybgA-phr, ydjiM, yebG

cirA, entCEBAH, fepA-entD, fiu

copA, cueO

cra, pitB, sbcDC

crl_1, exbBD, fepDGC, fhuACDB, thuE, gpmA, metJ, nohA-
ydfN-tfaQ, ryhB, ygaC, yhhY, yjjZ

cusCFBA, cusR, yedX

cvpA-purF-ubiX, glrR-glnB, hflD-purB, IlolB-ispE-prs,
purC, purEK, purL, speAB

cysDNC, cysK, tcyP, yciW, ygeH, yoaC

cytR, nagC, nagk, ycdZ

dapB, lysC

ddpXABCDF, patA, potFGHI, yeaGH, yhdWXYZ

decR, mlaFEDCB, yncE

dgcC, iraP, nlpA, wrbA-yccJ, yccT
dicB-ydfDE-insD-7-intQ, dicC-ydfXW

dsdC, norR

dtpA, omrA, omrB

ecpA, ecpR

efeU_1U_2, motAB-che AW, psd-mscM, tsr, ung
epd-pgk-fbaA, gapA-yeaD, mpl

erpA, iscR, rnlAB

evgA, nhaR

fabA, fabB

fadE, fadlJ

fbaB, fruBKA, glk, gpmM-envC-yibQ, pfkA, ppc, pykF,

pyrG-eno, tpiA

95

crp, fur
cueR
phoB

fur

hprR, phoB

purR

cysB
crp
argP
ntrC
marA
csgD
dicA
nsrR
ompR
matA
cpxR

cra, crp

hns
fabR, fadR
arcA, fadR

Ccra

In=1,1=0)
In=0,l=2)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=1,1=2)
In=0,l=1)
In=0,l=1)
In=1,1=1)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=1,1=1)
In=0,l=1)
In=0,l=1)
In=0,l=1)
In=0,l=2)
In=1,1=0)
g = 1.3802
In=0,l=2)
In=0,l=2)
In=0,l=1)




61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

87
88

fldB, pgi, ribA, ydbK-ompN

folE-yeiB, metA, metC, metF

fpr, pqiABC, rirA-waaQGPSBOJYZU
fucAQO, fucR, zraR

gfcA, ybhL, yfiR-dgcN-yfiB, ymiA-yciX
hupA, trg

ibaG-murA, rplU-rpmA-yhbE-obgE

ibpAB, yadV-htrE

idnK, idnR

isrC-flu, pth-ychF

lgoR, uxuR

lolA-rarA, osmB

IsrACDBFG-tam, IsrR, oxyR, rbsR

mall, mlc

manA, yhfA

mngAB, mngR

nadA-pnuC, nadB

nimR, nimT

ompX, rpsP-rimM-trmD-rplS, ychO, ysgA
pepD, yhbTS

phoP, slyB

pspABCDE, pspG

purR, pyrC

rhaR, rhaS

rrsA-ileT-alaT-rrlA-rrfA, rrsE-gltV-rrlE-rrfE
rrsB-glt T-rr1B-rrfB,  rrsC-gltU-rrlC-rrfC, rrsD-ileU-alaU-
rrlD-rrfD-thrV-rrfF, rrsG-gltW-rrlG-rrfG, rrsH-ileV-alaV-
rrlH-rrfH

ssb, uvrA

ttdABT, ttdR

26

SoxS
metJ
marA, soxS
crp

viiQ

crp, fis
mlrA
IHF

crp, gntR
oxyR
crp, exuR
rcsB

crp

crp

crp

nadR

fnr

csgD

IHF, pspF
fur

crp

fis, Irp

fis, hns, Irp

arcA, lexA

In=0,l=1)
In=0,l=1)
In=0,l=2)
In=1,1=1)
In=0,l=1)
In=0,l=2)
In=0,l=1)
In=0,l=1)
In=1,1=2)
In=0,l=1)
lpg = 1.6180
In=0,1=1)
In=1,1=1)
In=1,1=1)
In=0,l=1)
In=1,1=0)
In=0,l=1)
In=1,1=0)
In=0,l=1)
In=0,l=1)
In=2,1=0)
In=0,l=2)
In=1,1=1)
In=21=1)
In=0,l=2)
|n=0,1=23)
In=0,l=2)
In=1,1=0)




89|ycjG, ycjY-ymjDC-mpaA perR In=0,l=1)
90 |yegRZ, yfdX-frc-oxc-yfdVE evgA In=0,1=1)
91|ykgMO, znuA, znuCB zur In=0,l=1)

TABLE VI: List of fiber building blocks with ID, genes in
the fiber, external regulators of the fiber and fiber numbers.
We provide Supplementary File 1 which plots every building

block using the same IDs.
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