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Collective Influence Algorithm 
to find influencers via optimal 
percolation in massively large  
social media
Flaviano Morone, Byungjoon Min, Lin Bo, Romain Mari & Hernán A. Makse

We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by 
Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal 
percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made 
possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) 
variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-
Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a 
slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal 
percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, 
leaving little room for improvement for random graphs. However, the small augmented performance 
comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day 
big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 
million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP 
and BDP) would take more than 3,000 years to accomplish the same task.

In ref. 1 we developed the theory of influence maximization in complex networks, and we introduced the 
Collective Influence (CI) algorithm for localizing the minimal number of influential nodes. The CI algorithm 
can be applied to a broad class of problems, including the optimal immunization of human contact networks and 
the optimal spreading of informations in social media, which are ubiquitous in network science2–6. In fact, these 
two problems can be treated in a unified framework. As we noticed in1, the concept of influence is tightly related 
to the concept of network integrity. More precisely, the most influential nodes in a complex network form the 
minimal set whose removal would dismantle the network in many disconnected and non-extensive components. 
The measure of this fragmentation is the size of the largest cluster of nodes, called the giant component G of the 
network, and the problem of finding the minimal set of influencers can be mapped to optimal percolation.

The influence maximization problem is NP-hard7, and it can be approximately solved by different methods. 
We showed in1 that the objective function of this optimization problem is the largest eigenvalue of the 
non-backtracking matrix (NB) of the network λ n( )max , where = …

n n n n( , , )N1 2  is the vector of occupation 
numbers encoding node’s vacancy (ni =  0) or occupancy (ni =  1). In1 we introduced the Collective Influence algo-
rithm to minimize λ n( )max . This algorithm is able to produce nearly optimal solutions in almost linear time, and 
performs better than any other algorithm with comparable, i.e. nearly linear, computational running time.

In this paper we describe an improved implementation of the original CI algorithm, which keeps the computa-
tional complexity bounded by O(N log N) even when nodes are removed one-by-one. This is made possible by the 
finite size of the Collective Influence sphere, which, in turn, allows one to use a max-heap data structure for pro-
cessing very efficiently the CI values. The linear time implementation of CI is explained in Section Implementing 
CI in linear time.

In Section CI propagation we introduce a generalized version of the CI algorithm, which we name Collective 
Influence Propagation (CIP), that incorporates the information about nodes influence at the global level. 
Indeed, it can be seen as the limit version of CI when the radius ℓ of the ball is sent to infinity. The CIP algo-
rithm allows one to obtain a slightly better solution to the problem, i.e., a set of optimal influencers smaller than 
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the one found by CI. Remarkably, it is able to reach the exact optimal percolation threshold in random cubic 
graphs, as found analytically by Bau et al.10. However, this augmented performance comes at the expense of 
increasing the computational complexity of the algorithm from O(N log N) to O(N2), when nodes are deleted 
one-by-one (the max-heap trick cannot be exploited in this case). The same quadratic running time pertains 
also to a Belief-Propagation-Decimation (BPD) algorithm recently suggested in ref. 12. Based on this obser-
vation, CI remains the viable option for a fast and nearly-optimal influencer search engine in massively large 
networks. Quantitatively, a network of 200 millions nodes can be fully processed by CI (using a radius ℓ =  2) in 
roughly 2.5 hours, while both CIP and BPD would take a time of the order of 3,000 years to accomplish the task, 
as illustrated in Section CI Propagation and figures therein contained. In Section Collective Immunization we 
present yet another algorithm to solve the optimal influence problem, that we name CIBP . The CIBP algorithm is 
a belief-propagation-like algorithm inspired by the SIR disease spreading model, which provides as well nearly 
optimal solutions.

Implementing CI in linear time
In this section we describe how to implement the CI algorithm to keep the running time O(N log N) even when 
the nodes are removed one-by-one. CI is an adaptive algorithm which removes nodes progressively according to 
their current CI value, given by the following formula:

∑= − −
∈∂





i k kCI ( ) ( 1) ( 1),
(1)

i
j B i

j
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where ki is the degree of node i, B(i, ℓ) is the ball of radius ℓ centered on node i, and ∂ B(i, ℓ) is the frontier of the 
ball, that is, the set of nodes at distance ℓ from i (the distance between two nodes is defined as the number of edges 
of the shortest path connecting them).

At each step, the algorithm removes the node with the highest CIℓ(i) value, and keeps doing so until the giant 
component is destroyed. A straightforward implementation of the algorithm consists in computing at each step 
CIℓ(i) for each node i, and then removing the node with the largest CIℓ value. Despite its simplicity, this imple-
mentation is not optimal, as it takes a number of operations of order O(N2). However, the time complexity of the 
CI-algorithm can be kept at O(N log N) by using an appropriate data structure for storing and processing the CI 
values. The basic idea is that, after each node removal, we actually need to recompute CI just for a O(1) number 
of nodes, and find the new largest value O(log N) operations. This idea can be concretized through the use of a 
max-heap data structure.

Before to delve into the details, let us recall the definition of a “heap”. A heap is a binary tree encoding a pre-
scribed hierarchical rule between the parent node at level h and its children nodes at level h +  1, with no hierarchy 
among the children. In our specific case we use a heap with a max-heap rule, i.e., each parent node of the heap 
stores a CI value greater or equal to those of the children, but there is no order between the left child and the right 
one (see Fig. 1). The root node of the max-heap stores automatically the largest CI value.

One more concept is needed, i.e., the concept of “heapification”, which we shall be using often later on. 
Generally speaking, given a set of numbers S =  {x1, … , xN}, the heapification of the set S is a permutation ∏  of the 
elements {x∏(1), … , x∏(N )} satisfying the following max-heap property:

≥ ≥ .Π Π Π Π +x x x xAND (2)i i i i( ) (2 ) ( ) (2 1)

We call heapify(i) the function which heapifies the CI values in the sub-tree rooted on node i. The aim of this 
function is to down-move node i in the heap by swapping it with the largest of its children until it satisfies the 
max-heap property in the final location.

Having defined the main tools we are going to use in the implementation, we can now discuss the flow of the 
algorithm schematized in Fig. 2 step by step.

Figure 1. Max-heap data structure used to implement the CI algorithm. In the max-heap each parent node 
stores a CI value larger than the ones stored by its children. No ordering prescription is imposed to the nodes 
belonging to the same level h of the heap.
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Step 1 - Computing CI. To compute the CIℓ(i) value of node i according to Eq. (1) we have to find the nodes 
belonging to the frontier ∂ B(i, ℓ) of the ball of radius ℓ centered on i. In an undirected network, nodes j ∈  ∂ B(i, 
ℓ) can be found by using a simple breadth-first-search up to a distance ℓ from the central node i. In practice, first 
we visit the nearest neighbours of node i, which, of course, belong to ∂ B(i, 1). Then we visit all the neighbours of 
those nodes not yet visited, thus arriving to ∂ B(i, 2). We keep going until we visit all the nodes in ∂ B(i, ℓ). At this 
point we use the nodes j ∈  ∂ B(i, ℓ) to evaluate CIℓ(i) using Eq. (1). When all the CI values {CIℓ(1), … , CIℓ(N)} have 
been calculated, we arrange them in a max-heap, as explained next.

Step2 - Building the max-heap. We build the heap in a bottom-up fashion, from the leaves to the root. 
Practically, we first fill the heap with arbitrary values and then we heapify all the levels starting from the lowest 
one. In this way the root stores automatically the largest CI value.

Step3 - Removal. We remove from the network the node having the largest CI value, and we decrement by 
one the degrees of its neighbors. Since the largest CI value is stored in the root of the max-heap, then, after its 
removal, the root has to be replaced by a new one storing the new largest CI value. The easiest way to do this con-
sists in replacing the old root with the rightmost leaf in the last level of the heap, decreasing the size of the heap by 
one, and heapifying the heap starting from the new root, as shown schematically in Fig. 3.

Step4 - Updating CI values. Removal of a node perturbs the CI values of other nodes, which must be 
recomputed before the next removal. The nodes perturbed by the removal are only the ones placed at distances  
1, 2, … , ℓ, ℓ +  1 from the removed one. In other words, only the nodes inside the ball B(i, ℓ +  1) change their CI 
values when i is removed, while the others remain the same (see Fig. 4).

The CI values of nodes on the farthest layer at ℓ +  1 are easy to recompute. Indeed, let us consider one of this 
node and let us call k its degree. After the removal of the central node its CI value decreases simply by the amount 
k −  1. For nodes in the other layers at distance 1, 2, … , ℓ, the shift of their CI values is, in general, not equally 
simple to assess, and we need to use the procedure explained in Step1.

When we modify the CI value stored in a node of the heap, it may happen that the new heap does not satisfy 
the max-heap rule, and hence we have to restore the max heap-structure after each change of the CI values. First 
of all we note that, under the hypothesis that the structure around the removed node is locally tree-like, the new 
CI values of the surrounding nodes can only be smaller than their old values (for ℓ ≤  2 this is always true even 
without the tree-like hypothesis). Consequently, we need to heapify only the sub-trees rooted on those nodes. We 
stress that the order of the update and heapification operations is important: each node update must be followed 
by the corresponding heapification, before updating the next node.

Figure 2. Flow of the CI algorithm. The first part of the algorithm, executed only once, consists of two steps: 
i) computing CI for each node, and ii) allocating the CI values in the max-heap. After that, the main loop of the 
algorithm follows, which consists of three steps: iii) removing the node with highest CI value along with the 
root of the heap; iv) heapifying the heap starting from the new root (see Step3); v) updating the CI values of 
the perturbed nodes, and heapifying the sub-trees rooted on each updated node. The loop ends when the giant 
component is destroyed.
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Step5 - Stopping the algorithm. To decide when the algorithm has to be terminated we use a very simple 
method, which allows one to avoid checking when the giant component G vanishes. The idea is to monitor the 
following quantity after each node removal:

λ =

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
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where 〈 k〉  is the average degree of the network for q =  0. Equation (3) gives an approximation of the minimum of 
the largest eigenvalue of the non-backtracking matrix when Nq nodes are removed from the network1. For q =  0, 
it is easy to show that, for tree-like random graphs, λ(ℓ; 0) =  κ −  1, where κ =  〈 k2〉 /〈 k〉 . Removing nodes decreases 
the eigenvalue λ(ℓ; q), and the network is destroyed when limℓ→∞λ(ℓ; q =  qc) =  1. Practically we cannot take 
the limit ℓ →  ∞ , but for ℓ reasonably large, the relaxed condition λ(ℓ; q =  qc) =  1 works pretty well, as we show 

Figure 3. Schematic representation of how to update the heap. In step 1) the root node storing the highest 
CI value, node 11 in this case, is removed. In step 2) the root is replaced by the rightmost leaf of the heap, that is 
node 3 in this example. In step 3) the new heap does not satisfy the max-heap rule. In step 4) the heapification 
starting from the root restores the max-heap structure. The heapification down-moves progressively node 3 in 
the heap by swapping it with the largest of its children nodes, until it does satisfy the max-heap property in the 
final location.

Figure 4. Left panel: the CI of the red node at the level ℓ is computed using the nodes on the boundary of the 
ball of radius ℓ centered on the red node. Right panel: the removal of the red node perturbs the CI values of 
nodes located up to a distance ℓ +  1 from it. Accordingly, only the CI values of these nodes, i.e. the black ones, 
must be updated before the next removal.
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in Fig. 5. Therefore, we can stop the algorithm when λ(ℓ; q) =  1. The advantage of using Eq. (3) is that it can be 
updated on runtime at nearly no additional computational cost, and therefore does not require additional O(N) 
calculations (per node removal) needed to compute the giant component. Figure 6 shows the giant component 
attacked by CI and high-degree adaptive in a ER network of 100 million nodes.

The running time of CI algorithm is O(N log N). In fact, Step1 and Step2 take both O(N) operations and they 
are performed only once. Step3 and Step4 take each at most O(log N) operations and they are repeated O(N) 
times. Therefore the algorithm takes O(N log N +  N) ∼  O(N log N) operations. To check the (N log N) scaling of 
the CI algorithm we performed extensive numerical simulations on very large networks up to N =  2 ×  108 nodes. 
The results shown in Fig. 7 clearly confirm that CI runs in nearly linear time.

Figure 5. Giant component G(q) (red dots) computed with CI, second largest cluster (blue triangles), and 
the eigenvalue λ(ℓ; q) (black crosses) as given by Eq. (3), as a function of the removed nodes q. Here we used 
an ER network of 106 nodes, average degree 〈 k〉  =  3.5, and radius of the CI sphere equal to ℓ =  5. The eigenvalue 
λ(q) reaches one when the giant component is zero, as marked also by the peak in the size of the second largest 
cluster. In this plot the size of the second largest cluster is magnified to make it visible at the scale of the giant 
component.

Figure 6. Giant component G(q) as a function of the fraction of nodes q removed using CI algorithm (red 
dots) on a ER network of 108 nodes. The result obtained by using CI is compared with the one obtained by 
using the HDA (high degree adaptive) strategy (black crosses), one of the few strategies which is adaptive and 
linear in algorithmic time. Indeed, the max-heap trick can be used also for other adaptive algorithms having 
the same properties of CI, such as HDA (which corresponds basically to the ℓ =  0 limit of the CI algorithm). 
Consequently, HDA has the same running time of its non-adaptive version, i.e., the simple high-degree 
centrality. However, exploiting a max-heap is not feasible for general adaptive algorithms, like CIP or BPD. 
Therefore, since we are unable to keep their running time linear in the system size when nodes are removed 
one-by-one, we cannot apply them on the large network instance used in this example, as their running time for 
this network is about 103 years. In the inset we show the giant component G(q) before and after the application 
of the reinsertion method discussed in Sec. Implementing CI in linear time at Step6.
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Step6 - Reinsertion. We conclude this section by discussing a refinement of CI algorithm, which we use to 
minimize the giant component in the phase G >  0. This is useful when it is impossible to reach the optimal perco-
lation threshold (where G =  0), but one still wants to minimize G using the available resources, i.e., the maximum 
number of node removals at one’s disposal. The main idea is based on a reinsertion method, according to which 
nodes are reinserted in the network using the following criterion. We start from the percolation point, where the 
network is fragmented in many clusters. We add back in the network one of the removed node, chosen such that, 
once reinserted, it joins the smallest number of clusters. Note that we do not require that the reinserted node joins 
the clusters of smallest sizes, but only the minimum number of clusters, independently from their sizes. When 
the node is reinserted we restore also the edges with its neighbors which are in the network (but not the ones with 
neighbors not yet reinserted, if any). The procedure is repeated until all the nodes are back in the network. When 
implementing the reinsertion, we add back a finite fraction of nodes at each step. In our simulations we reinserted 
0.2% of nodes at each step. Moreover, we observed that using a fraction smaller than 0.2% does not change the 
results. In the inset of Fig. 6 we show the giant component G(q) as a function of the fraction of removed nodes q 
before and after the reinsertion step.

CI propagation
In this section we present the CI-propagation algorithm (CIP), which extends the CI algorithm to take into 
account the global information beyond the local CI sphere. However, the main idea of CIP remains the same, i.e., 
minimizing the largest eigenvalue of the non-backtracking (NB) matrix1. Indeed, CIP is obtained asymptotically 
from CIℓ as ℓ →  ∞ .

The NB is a non-symmetric matrix and it has different right and left eigenvectors. As we will see the right and 
left eigenvectors corresponding to the largest eigenvalue provides two different, yet intuitive, notions of node’s 
influence. The left eigenvector 

��
L is a vector with 2M entries Li→j, where M is the total number of links, that satisfies 

the following equation:
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where ̂ is the NB matrix. Both left and right eigenvectors can be thought of as two sets of messages traveling 
along the directed edges of the network. This becomes more apparent if we transform Eqs (4–5) in dynamical 
updating rules for the messages Li→j and Ri→j as:
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The interpretation of Eq. (6) is the following. For each directed edge i →  j, the message →Li j
t  at time t from i to j is 

updated using the messages →
−Lk i

t 1 incoming into node i at time t −  1, except the message →
−Lj i

t 1. Therefore, the left 
message →Li j

t  represents the amount of information received by node i from its neighbours, other than j. On the 

Figure 7. Running time of the CI algorithm (including the reinsertion step) for ER random graphs of 
average degree 〈k〉 = 3, as a function of the network size, and for different values of the radius ℓ of the ball. 
(To generate very large ER random graphs we used the algorithm of ref. 8). For a graph with 0.2 billion nodes 
the running time is less than 2.5 hours with ℓ =  2 and ∼ 5 hours with ℓ =  3.
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contrary, the right message Ri→j is updated using the sum of the outgoing messages from node j to nodes k other 
than i, and thus it measures the amount of information sent by node j to its neighbours, other than i.

Now we come to the problem of minimizing the largest eigenvalue λmax of the NB matrix ̂ by removing nodes 
one-by-one. Let us consider the non-backtracking matrix ̂ of the network. When we remove a node from the 
network, the NB matrix ̂ changes as a consequence of the node deletion. Let us call δ−ˆ ˆ  the NB matrix of the 
network with one node less. Similarly, also the right and left eigenvectors of ̂ change after the node removal. We 
call δ−
�� ��
R R and δ−

�� ��
L L the right and left eigenvectors of the perturbed NB matrix δ−ˆ ˆ . Then, the eigenvalue 

equation for the matrix δ−ˆ ˆ  reads:

δ δ λ δλ δ− − = − −
�� �� �� ��ˆ ˆ R R R R( )( ) ( )( ), (7) 

where λ −  δλ is the new eigenvalue after the node removal. We also note that δλ ≥  0, and that the entries of the 
matrix δ̂ are non-negative. Assuming that all the terms δ ˆ , δ

��
R and δλ can be treated as small, so that we can 

neglect contributions of order δ δ
��

‖ ˆ ‖O R( ) and δλ δ
��

‖ ‖O R( ), we obtain the following simpler eigenvalue equation:
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Now, by scalar multiplying on the left both sides of Eq. (8) by the left eigenvector 
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L of the NB matrix ̂, we 

obtain the following equation for the eigenvalue shift δλ due to removal of a node:
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Next, we notice that the matrix δ̂ has non-zero components only on the pairs of non-backtracking edges 
(i →  j, k →  ℓ) containing the removed node in any position. If we call i the removed node, then δ ˆ  has non-zero 
components, equal 1, only for the following pairs of non-backtracking edges:

→ → ← ← → → ← ←k i j k i j i k j i k j, , , (10)

for all j, k ∈  ∂ i. Taking into account only the contributions in Eq. (10) to evaluate the sum on the r.h.s of 
Eq. (9), we find:

∑δλ λ
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i j i j j i j i

From Eq. (11) is clear that the node i which decreases the most the largest eigenvalue λ of the NB matrix ̂ after 
its removal, is the one that maximizes the sum on the r.h.s. of Eq. (11). We call this sum the Collective Influence 
Propagation of node i, which we define as:

∑= + .
∈∂

→ → → →i L R L RCI ( ) ( )
(12)j i

i j i j j i j iP

The quantity CIP(i) combines both the information received and the information broadcasted by node i. The 
interpretation of this quantity comes directly from the recursive Eqs (4) and (5). Indeed, if we plug the recursive 
Eq. (4) for Li→j into (12), and we keep iterating ℓ times, we obtain the sum of all the messages L→Ball(i, ℓ) incoming 
into the ball of radius ℓ centered on i. Similarly, by plugging Eq. (5) for Ri→j into (12) and iterating ℓ times, we 
obtain the sum of all the messages R→Ball(i, ℓ) outgoing from the ball of radius ℓ centered on i (analogous inter-
pretations hold for Li→j and Ri→j). With a bit of verbal playfulness, we could say that Eq. (12) quantifies both the 
“IN-fluence” and the “OUT-fluence” of node i.

Having defined the main quantity of the CIP algorithm, we move to explain the few simple steps to implement it.

(1) Start with all nodes present and iterate Eq. (6) until convergence.
(2) Use the converged messages Li→j and Ri→j to compute the CIP(i) values for each node i.
(3) Remove node i* with the highest value of CIP(i*) and set to zero all its ingoing and outgoing messages.
(4) Repeat from 2) until λmax =  1.

The CIP algorithm produces better results than CI. As we show in Fig. 8 for the case of a random cubic 
graph, CIP is able to identify the optimal fraction of influencers, which is known analytically to be qc =  1/410. 
Unfortunately the CIP algorithm has running time O(N2) and thus cannot be scaled to very large networks, 
as we show in Fig. 9, where we also compare with the time complexity of the BPD algorithm of ref. 12 and 
with the original CI algorithm. We also note that in the implementation of CIP there is no need to compute 
explicitly the giant component, and the algorithm is terminated when the largest eigenvalue of the NB matrix 
equals λmax =  1.

We close this section by noticing that CIP is a parameter-free algorithm, i.e., it does not require any fine tuning 
and can be applied straight away thanks to its low programming complexity. The introduction of tunable param-
eters in the algorithm may improve its performance, but would not reduce its running time. Furthermore, the 
quasi-optimal performance of CIP for finding minimal percolation sets in small systems in Fig. 8 leaves little room 
for improvement, and so we do not develop the algorithm further.
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Collective Immunization
In this section we formulate the optimal percolation problem as the limit of the optimal immunization prob-
lem in the SIR –Susceptible-Infected-Recovered– disease spreading model11, and we present the Collective 
Immunization algorithm, or CIBP, based on Belief Propagation.

According to the SIR model, a variable =x S I R{ , , }i
t  encodes the state of each node i at time step t. A node in 

a state xi =  I stays infected for a finite time, and in this state, it may infect a neighboring node j if xj =  S. After the 
infectious period, the infected node i recovers. Nodes in state R stay in R forever, being immune to further infec-
tion. Thus in the long time limit, the disease state ∞xi  of any node i is either R or S. In this limit one can compute 
the marginals of x∞ on any node, knowing the initial state x0, in a ‘message passing’ manner. The message that 
node i passes to node j is the probability ν |→

∞x x( )i j i i
0  that node i ends in state ∞xi  knowing it starts in state xi

0, 
assuming that node j is absent.

According to the dynamic rule of SIR model, we have the following set of relations:

Figure 8. Giant components G(q) computed with σi = 1 (red dots) and CIBP (blue triangles) algorithms, 
and the eigenvalue λ(q) (black crosses) computed with CIP, as a function of the removed nodes q, in a 
Random Regular Graph of 105 nodes, and degree k = 3. The vertical line at q =  0.25 =  qc marks the position of 
the analytical exact optimal value of the percolation threshold10.

Figure 9. Running time of CI (red dots) at level ℓ = 3, CIP (black squares), and the BPD algorithm of  
ref. 12 (blue triangles), as a function of the network size N, for ER networks of average degree 〈k〉 = 3. The 
CI algorithm is the only one that scales almost linearly with the system size, while both BP algorithms, CIP and 
BPD, scale quadratically with the network size N. The vertical dashed line is at N =  2 ×  108: for this network 
size, the running time of CI at level ℓ =  3 is roughly 5 hours (and ∼ 2.5 hours for ℓ =  2), while both CIP and BPD 
would take a time of ∼ 3,000 years to accomplish the same task. (To measure the running time of CIP and BPD 
we used the same number of iterations of the messages. In all three algorithms nodes were removed one-by-one. 
Data are in log− log scale.) To draw the curve corresponding to the BPD algorithm we used the original source-
code provided by the authors of ref. 12 (power.itp.ac.cn/zhouhj/codes.html).
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ν ν

ν

ν

= | = = − = | =

= | = =

= | = = .

→
∞

→
∞

→
∞

→
∞

x R x S x S x S

x S x R

x S x I

( ) 1 ( ),

( ) 0,

( ) 0 (13)

i j i i i j i i

i j i i

i j i i

0 0

0

0

Therefore, it is clear that the knowledge of the sole ν = | =→
∞x S x S( )i j i i

0  is enough to reconstruct the long 
time limit of the marginal of ∞xi . Next, we assume that each node is initially infected with probability γ, i.e., at 
time 0 a randomly chosen set of γN sites are infected. We also introduce a binary variable ni for each node i, taking 
values ni =  0 if node i is immunized (i.e. removed in the language of optimal percolation), and ni =  1 if it is not (i.e. 
present). For a locally tree-like network where the interactions satisfy the cluster decomposition property (i.e. 
nodes far apart in the tree do not interfere), the probabilities (messages) received by node i from its neighbors j 
can be considered as uncorrelated. This allows one to calculate self-consistently the messages through the follow-
ing equations:

∏ν γ β ν= | ≠ = − − − = | ≠→
∞

∈∂
→

∞x S x R x S x R n( ) (1 ) [1 (1 ( )) ],
(14)

i j i i
k i j

k i k k k
0

\

0

where β is the transmission probability of the disease (or the spreading rate). The optimal percolation problem is 
found in the limits γ =  1/N →  0 and β →  1.

The marginal probability that node i is eventually susceptible given that node i is not one of the immunizators 
is obtained through:

∏ν γ β ν= | ≠ = − − − = | ≠ .∞

∈∂
→

∞x S x R x S x R n( ) (1 ) [1 (1 ( )) ]
(15)

i i i
k i

k i k k k
0 0

From now on we drop the argument in the probabilities ν i→j and ν i, and we simply write ν ν= ≠ =∞x S x R( )i i i i
0 .

The best immunization problem amounts to find the minimal set of initially immunized nodes that minimizes 
the outbreak size ν= ∑ −F n (1 )i i i . This problem can be equivalently solved by minimizing the following energy 
(or cost) function:

∑ ν= − .
E n n( ) log( )

(16)i
i i

The energy function in Eq. (16) has the virtue of describing a pairwise model, and therefore is easier to treat. 
Indeed, substituting (15) into (16) one can rewrite the energy function as:

∑

β ν β ν

=

= − − − − − −
< >

→ →

E n U n n

U n n n n n n

( ) ( , ),

( , ) log[1 (1 ) ] log[1 (1 ) ], (17)

ij
ij i j

ij i j i j i j j i j i

where we drop an useless constant term. We found useful to make the following change of variables:

σ
=
−n 1
2

, (18)i
i

so that σi =  1 when node i is removed or immunized, and σi =  − 1 when it is present or not immunized. The min-
imum of the energy function (17) can be found by solving the following equations:

∑µ σ σ σ σ= − +












− + +






−






− − +












σ σ∈∂

→ →
h U h U hmax ( 1, )

2
max ( 1, )

2
,

(19)
i

k i
ik k

k i

k ik k

k i

k
k k

∑µ σ σ σ σ= − +










− + +






−






− − +










σ σ

→
∈∂

→ →h U h U hmax ( 1, )
2

max ( 1, )
2

,
(20)

i j
k i j

ik k
k i

k ik k
k i

k
\ k k

where the variable hi is the log-likelihood ratio:

=










h i
i

log probability that is removed
probability that is present

,
(21)

i

and μ is a parameter (chemical potential) that can be varied to fix the desired fraction of removed nodes q. The 
value of σi is related to hi via the equation:

σ = .hsign( ) (22)i i

Equations (14), (19), (20) and (22) constitute the full set of equations of the immunization optimization 
problem, which, for γ =  0 and β =  1, is analogous to optimal percolation since, in this case, the best immuniza-
tors are those that optimally destroy the giant connected component. These equations can be solved iteratively 
as follows:



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:30062 | DOI: 10.1038/srep30062

•	 Choose a value for μ, γ, β, and initialize all the state variables σi and hi→j to random values.
•	 Then iterate Eqs (14) until convergence to find the values of ν i→j.
•	 Then iterate Eqs (20) until convergence to find the values of hi→j.
•	 Compute the new hi using (19), and the the new state σi of node i via Eq. (22).
•	 Repeat until all the fields {hi} have converged.

In cases where the equations (20) do not converge, we use the reinforcement technique9. Once a solution to 
the equations has been found, the configuration σ→⁎ is the output of the algorithm: if σ =⁎ 1i  the node is removed, 
and if σ = −⁎ 1i  it is present. The CIBP algorithm has the same performance as the CIP algorithm, as we show for 
the case of random cubic graphs in Fig. 8, reproducing the exact result of ref. 10 for small system size and leaving 
virtually no room for improvement for these systems. However, while it improves over CI, it suffers the same 
deficiency for large systems as CIP and BDP since it is a quadratic algorithm which can be applied only to small 
networks.

We conclude this section by emphasizing that all the algorithms discussed in this work leverage on the 
assumption about the locally tree-like structure of the network, while real networks may violate this hypothesis. 
Nonetheless, the tree-like approximation, also known as the Bethe ansatz, is a very good mean-field theory for 
complex networks, and corrections due to the presence of loops of finite length may be, in principle, accommo-
dated systematically. Indeed, it would be very interesting and useful to develop further, for example, the theory of 
optimal percolation by including loop corrections, following the theoretical lines of, e.g., refs 13–16.

Conclusions
We have shown how to implement the CI algorithm introduced in ref. 1 in nearly linear time when nodes are 
removed one by one. This is possible thanks to the finite radius ℓ of the CI sphere, which in turn allows one to 
process the CI values in a max-heap data structure.

Moreover, we have introduced CIP , a modified CI algorithm taking into account the global rearrangement of 
the CI values after each node removal, and, in this respect, it corresponds to the ℓ →  ∞  limit of CI. We have also 
presented CIBP , a new algorithm to solve the optimal percolation problem, which blends the dynamics of the SIR 
disease spreading model with message passing updating rules. The analysis of these algorithms (including BDP 
as well) reveals that the improvements over CI are small and, more importantly, they are made at the expense of 
increasing the computational complexity from linear (CI) to quadratic (BP) in the system size N, rendering BP 
unfit for large datasets.

Therefore, CI remains the viable option of a nearly-optimal-low-complexity influencer search engine, which 
is applicable to massively large networks of several hundred million of nodes, while the global CIP algorithm can 
still be used to find small corrections in small networks when time performance is not an issue. Furthermore, 
from a theoretical point of view, the simplicity of the CI analysis based on the NB eigenvalue remains as a good 
option for theoretical generalization of optimal percolation to more complicated topologies, as shown in17,18 for 
brain network of networks with interdependencies and other more complex applications that are being presently 
developed.
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